Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Acevedo-Peña, Prospero

  • Google
  • 1
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Electrochemical Methane Activation and Conversion Using Fe, Co, Cu Oxides/ZrO<sub>2</sub> Nanocompositescitations

Places of action

Chart of shared publication
Vazquez, Juvencio
1 / 1 shared
Molina, Paulina
1 / 1 shared
Montiel, Marlene González
1 / 1 shared
Reguera, Edilso
1 / 4 shared
Mojica Molina, Hebert Rodrigo
1 / 1 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Vazquez, Juvencio
  • Molina, Paulina
  • Montiel, Marlene González
  • Reguera, Edilso
  • Mojica Molina, Hebert Rodrigo
OrganizationsLocationPeople

article

Electrochemical Methane Activation and Conversion Using Fe, Co, Cu Oxides/ZrO<sub>2</sub> Nanocomposites

  • Vazquez, Juvencio
  • Acevedo-Peña, Prospero
  • Molina, Paulina
  • Montiel, Marlene González
  • Reguera, Edilso
  • Mojica Molina, Hebert Rodrigo
Abstract

<jats:p>Methane has been widely employed as a feedstock for numerous chemical and electrochemical processes. However, methane activation poses a challenge due to the molecule’s relative inertness, lack of significant polarity and because its bond energy is the highest among all hydrocarbons. Consequently, the ability to activate methane (CH<jats:sub>4</jats:sub>), or access the C atom to form new bonds is a difficult endeavor [1]. Furthermore, CH<jats:sub>4</jats:sub> gas emission has long been ignored and regarded as a trivial matter [2], even though its effect as a greenhouse gas is over 30 times more potent than that of CO<jats:sub>2</jats:sub> [3]. In this regard, the oxidation and conversion of CH<jats:sub>4</jats:sub> to liquid alcohols is an economical and energy efficient alternative with academic and industry interest. </jats:p><jats:p>The present study shows the synthesis and characterization of Fe, Co, Cu oxides/ZrO<jats:sub>2 </jats:sub>nanocomposites used as bifunctional electrocatalyst for the electrochemical activation of methane, which in conventional alkaline electrochemical systems is always performed at room temperature. </jats:p><jats:p>Fe, Co, Cu oxides/ZrO<jats:sub>2 </jats:sub>nanocomposites were synthesized using an aqueous-phase precipitation technique and their structural, spectroscopic, magnetic and electrochemical characteristics were evaluated. </jats:p><jats:p>Methane was electrochemically activated over the three functional electrocatalysts here synthesized. Carbonate anions were used as an oxygen donator to facilitate methane activation while ZrO<jats:sub>2 </jats:sub>adsorbed and donated carbonate anions to active sites on Fe, Co and Cu oxides where methane was adsorbed and activated. Products formed were studied by gas chromatography. </jats:p><jats:p>References: </jats:p><jats:p> [1] R. Bergman, <jats:italic>Nature</jats:italic>, 446, 391 (2007). </jats:p><jats:p>[2] A. R. Brandt, G. A. Heath, E. A. Kort, F. O. Sullivan, G. Petron, S. M. Jordaan, P. Tans, J. Wilcox, A. M. Gopstein, D. Arent, S. Wofsy, N. J. Brown, R. Bradley, G. D. Stucky, D. Eardley, R. Harriss, <jats:italic>Science, 343</jats:italic>, 733 (2014). </jats:p><jats:p>[3] D. T. Shindell, G. Faluvegi, D. M. Koch, G. A. Schmidt, N. Unger, S. E. Bauer, <jats:italic>Science</jats:italic>, <jats:italic>326</jats:italic>, 716 (2009). </jats:p><jats:p>[4] Neil Spinner and William E. Mustain<jats:italic>, Journal of The Electrochemical Society</jats:italic>, 160 (11) F1275-F1281 (2013).</jats:p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • phase
  • Oxygen
  • precipitation
  • activation
  • gas chromatography
  • alcohol