People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Stroud, Rhonda
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2018(Invited) Nanoscale Design and Modification of Plasmonic Aerogels for Photocatalytic Hydrogen Generation
- 2017Effects of Nanoscale Interfacial Design on Photocatalytic Hydrogen Generation Activity at Plasmonic Au–TiO<sub>2</sub> and Au–TiO<sub>2</sub>/Pt Aerogels
- 2017Oxidation−Stable Plasmonic Copper Nanoparticles in Photocatalytic TiO<sub>2</sub> Nanoarchitectures
Places of action
Organizations | Location | People |
---|
article
(Invited) Nanoscale Design and Modification of Plasmonic Aerogels for Photocatalytic Hydrogen Generation
Abstract
<jats:p>Composite catalytic aerogels comprise a highly-flexible design motif for the creation of solar fuels photocatalysts. We exploit the compositional and interfacial design flexibility of catalytic aerogels to couple surface plasmon resonant (SPR) guests to nanometric oxidation and reduction catalysts in one hierarchical photocatalytic composite architecture. In our composite aerogels, the nanoscale TiO<jats:sub>2</jats:sub> aerogel acts as a 3D-interconnected network of nanowires that couples all of the functional elements required to photogenerate molecular hydrogen from visible light and water: visible light sensitization, electron and ion transport, and oxidation and reduction catalysis. </jats:p><jats:p>We investigate the effects of synthetically modifying the TiO<jats:sub>2</jats:sub> aerogel network and the nanoparticulate Au||TiO<jats:sub>2</jats:sub> interfaces in plasmonic Au–TiO<jats:sub>2</jats:sub> aerogels on light sensitization, carrier (electron–hole pair) generation, and photocatalytic H<jats:sub>2</jats:sub> evolution under both broadband (i.e., UV + visible) and visible excitation. We also introduce oxidation and reduction co-catalyst nanoparticles into the plasmonic aerogels, creating composite aerogels that perform visible light SPR–driven photocatalytic reduction of water to generate H<jats:sub>2</jats:sub>. The nanostructured high surface–area network in the aerogel spatially and effectively separates charge while electrochemically connecting plasmonic nanoparticle sensitizers and metal nanoparticle all in one mesoscale architecture and at length scales compatible with the kinetics of each reaction. </jats:p><jats:p /><jats:p><jats:bold>Reference:</jats:bold></jats:p><jats:p>"Plasmonic aerogels as a 3D nanoscale platform for solar fuels photocatalysis.” P. A. DeSario, J. J. Pietron, A. Dunkelburger, T.H. Brintlinger, O. Baturina, R. M. Stroud, J. C. Owrutsky, and D. R. Rolison, <jats:italic>Langmuir</jats:italic>, <jats:bold>2017</jats:bold>, 33, 9444–9454; doi: 10.1021/acs.langmuir.7b01117 </jats:p><jats:p>This work is supported by the U.S. Office of Naval Research.</jats:p>