Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rolison, Debra R.

  • Google
  • 7
  • 19
  • 131

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2018Trapping a Ru₂O₃ Corundum-like Structure at Ultrathin, Disordered RuO₂ Nanoskins Expressed in 3Dcitations
  • 2018(Invited) Nanoscale Design and Modification of Plasmonic Aerogels for Photocatalytic Hydrogen Generationcitations
  • 2017Effects of Nanoscale Interfacial Design on Photocatalytic Hydrogen Generation Activity at Plasmonic Au–TiO<sub>2</sub> and Au–TiO<sub>2</sub>/Pt Aerogelscitations
  • 2017Demonstrating the Activity and Stability of Conformal RuO<sub>2</sub> "Nanoskins" on Technologically-Relevant, 3D Electrode Suports for Water Oxidation in Acid Electrolytecitations
  • 2017Oxidation−Stable Plasmonic Copper Nanoparticles in Photocatalytic TiO<sub>2</sub> Nanoarchitecturescitations
  • 2013Plasmonic enhancement of visible-light water splitting with Au-TiO2 composite aerogels.131citations
  • 2013Electron Tomography of Gold Nanoparticles in Titania Composite Aerogels: Probing Structure to Understand Photochemistrycitations

Places of action

Chart of shared publication
Long, Jeffrey W.
1 / 4 shared
Mansour, Azzam N.
1 / 2 shared
Donakowski, Martin D.
1 / 3 shared
Chervin, Christopher N.
2 / 7 shared
Pala, Irina R.
1 / 3 shared
Desario, Paul
7 / 25 shared
Stroud, Rhonda
3 / 3 shared
Dunkelberger, Adam
1 / 1 shared
Baturina, Olga
3 / 5 shared
Owrutsky, Jeffrey C.
1 / 2 shared
Pitman, Catherine L.
1 / 3 shared
Pietron, Jeremy
4 / 11 shared
Brintlinger, Todd
5 / 10 shared
Sassin, Megan B.
1 / 4 shared
Nelson, Eric S.
1 / 3 shared
Parker, Joseph F.
1 / 4 shared
Devantier, Devyn E.
1 / 1 shared
Pietron, Jeremy J.
1 / 1 shared
Stroud, Rhonda M.
1 / 3 shared
Chart of publication period
2018
2017
2013

Co-Authors (by relevance)

  • Long, Jeffrey W.
  • Mansour, Azzam N.
  • Donakowski, Martin D.
  • Chervin, Christopher N.
  • Pala, Irina R.
  • Desario, Paul
  • Stroud, Rhonda
  • Dunkelberger, Adam
  • Baturina, Olga
  • Owrutsky, Jeffrey C.
  • Pitman, Catherine L.
  • Pietron, Jeremy
  • Brintlinger, Todd
  • Sassin, Megan B.
  • Nelson, Eric S.
  • Parker, Joseph F.
  • Devantier, Devyn E.
  • Pietron, Jeremy J.
  • Stroud, Rhonda M.
OrganizationsLocationPeople

article

Effects of Nanoscale Interfacial Design on Photocatalytic Hydrogen Generation Activity at Plasmonic Au–TiO<sub>2</sub> and Au–TiO<sub>2</sub>/Pt Aerogels

  • Stroud, Rhonda
  • Baturina, Olga
  • Rolison, Debra R.
  • Pietron, Jeremy
  • Desario, Paul
  • Brintlinger, Todd
Abstract

<jats:p>We demonstrate that composite catalytic aerogels represent a superior materials design motif for the creation of solar fuels photocatalysts. We couple surface plasmon resonant (SPR) guests to the inherent compositional and interfacial design flexibility of catalytic aerogels to photogenerate molecular hydrogen (H<jats:sub>2</jats:sub>). We investigate the effects of synthetically modifying the TiO<jats:sub>2</jats:sub> aerogel network and the nanoparticulate Au||TiO<jats:sub>2</jats:sub> interfaces in plasmonic Au–TiO<jats:sub>2</jats:sub> aerogels on H<jats:sub>2</jats:sub> evolution under both broadband (i.e., UV + visible light) and visible excitation. We also introduce non-plasmonic Pt co-catalyst nanoparticles into our composite aerogels, creating Au–TiO<jats:sub>2</jats:sub>/Pt aerogels that perform visible light SPR-driven photocatalytic reduction of water to generate H<jats:sub>2</jats:sub>. </jats:p><jats:p> The fuels production achieved with this multicomponent photocatalytic nanoreactor demonstrates that the nanostructured high-surface-area network in the aerogel can spatially and effectively separate charge while electrochemically connecting plasmonic nanoparticle sensitizers and metal nanoparticle. In doing so, we prove several crucial concepts: (1) integration of a plasmonic sensitizer with a separate water reduction co-catalyst within the ultraporous aerogel nanoarchitecture; (2) wiring the electron–hole pairs generated under visible light at the plasmonic Au||TiO<jats:sub>2</jats:sub> interface to the co-catalyst via the nanoscale TiO<jats:sub>2</jats:sub> network; and (3) combining both the photocatalytic oxidation and reduction reactions critical to solar fuels photocatalysis into one composite material at length scales compatible with the reaction kinetics. </jats:p><jats:p>This work is supported by the Office of Naval Research.</jats:p><jats:p></jats:p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • surface
  • composite
  • Hydrogen
  • surface plasmon resonance spectroscopy