Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

More, Karren L.

  • Google
  • 3
  • 16
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2017(Invited) Methods for Understanding and Mitigating High Current Density Performance Losses in Low Loaded Pt-Based PEMFCs3citations
  • 2010Breakdown properties of epoxy nanodielectric2citations
  • 2009Electrical properties of a polymeric nanocomposite with in-situ synthesized nanoparticles4citations

Places of action

Chart of shared publication
Neyerlin, Kenneth Charles
1 / 1 shared
Mauger, Scott A.
1 / 2 shared
Kumaraguru, Swami
1 / 1 shared
Kocha, Shyam S.
1 / 1 shared
Kongkanand, Anusorn
1 / 2 shared
Pivovar, Bryan S.
1 / 1 shared
Gu, Wenbin
1 / 1 shared
Bender, Guido
1 / 1 shared
Ahluwalia, Rajesh
1 / 1 shared
Chuang, Abel
1 / 1 shared
Cantoni, Claudia
1 / 3 shared
Ellis, A. R.
2 / 16 shared
Polizos, Georgios
2 / 14 shared
Sauers, Isidor
2 / 21 shared
James, D. Randy
2 / 8 shared
Tuncer, Enis
2 / 39 shared
Chart of publication period
2017
2010
2009

Co-Authors (by relevance)

  • Neyerlin, Kenneth Charles
  • Mauger, Scott A.
  • Kumaraguru, Swami
  • Kocha, Shyam S.
  • Kongkanand, Anusorn
  • Pivovar, Bryan S.
  • Gu, Wenbin
  • Bender, Guido
  • Ahluwalia, Rajesh
  • Chuang, Abel
  • Cantoni, Claudia
  • Ellis, A. R.
  • Polizos, Georgios
  • Sauers, Isidor
  • James, D. Randy
  • Tuncer, Enis
OrganizationsLocationPeople

article

(Invited) Methods for Understanding and Mitigating High Current Density Performance Losses in Low Loaded Pt-Based PEMFCs

  • Neyerlin, Kenneth Charles
  • More, Karren L.
  • Mauger, Scott A.
  • Kumaraguru, Swami
  • Kocha, Shyam S.
  • Kongkanand, Anusorn
  • Pivovar, Bryan S.
  • Gu, Wenbin
  • Bender, Guido
  • Ahluwalia, Rajesh
  • Chuang, Abel
Abstract

<jats:p>Significant advances in the development of electrocatalysts that exceed the DOE target of 440 mA/mg<jats:sub>Pt</jats:sub> (H<jats:sub>2</jats:sub>/O<jats:sub>2</jats:sub>, 0.90V, 80<jats:sup>o</jats:sup>C, 100% RH, p<jats:sub>total</jats:sub>=150 kPa) for ORR activity have placed proton exchange membrane fuel cells on a promising path towards achieving the DOE target of a 0.1 mg<jats:sub>Pt</jats:sub>/cm<jats:sup>2</jats:sup><jats:sub>elec</jats:sub> cathode loading by 2020. However, unanticipated voltage losses that manifest at high current density and low Pt loading have prevented the attainment of the 0.125 g<jats:sub>PGM</jats:sub>/kW<jats:sub>rated</jats:sub> 2020 target.<jats:sup>1</jats:sup> While some of the observed voltage losses for low-loaded Pt electrodes (&lt; 0.1 mg<jats:sub>Pt</jats:sub>/cm<jats:sup>2</jats:sup><jats:sub>elec</jats:sub>) has been attributed to oxide dependent kinetics that manifest at the lower iR-free potentials (&lt; 0.75V),<jats:sup>2</jats:sup> it is believed that a significant portion of this unanticipated loss stems from an oxygen transport resistance local to or associated with electrochemically accessible Pt surface area.<jats:sup>2-4</jats:sup> While the exact cause of this phenomenon remains unknown, studies have demonstrated that this loss both: 1) scales with total Pt surface area<jats:sup>4</jats:sup> and 2) can be associated with the incorporation of ionomer into the cathode electrode.<jats:sup>3</jats:sup> As such, this loss has been termed the local Pt resistance (R<jats:sub>O2</jats:sub><jats:sup>Pt</jats:sup>). </jats:p><jats:p>In this work we have applied a variety of in-situ electrochemical diagnostics across a range of material sets (e.g. electrocatalysts, carbon supports, ionomers, and membranes) in order to understand their impact on high current density operation in low-Pt loaded electrodes. Values derived for R<jats:sub>O2</jats:sub><jats:sup>Pt</jats:sup> will be compared to those determined from ex-situ measurements in an effort to elucidate the fundamental reasons for the observed performance loss. </jats:p><jats:p>Additionally, parallel approaches involving novel and state-of-the-art, electrocatalysts, electrodes and MEA designs aimed at mitigating performance loss at high current density and low Pt loading will be presented. </jats:p><jats:p><jats:bold>Acknowledgements</jats:bold></jats:p><jats:p>This work was funded through the DOE FC-PAD Consortium and by the U.S. Department of Energy under CRADA #CRD-14-539. </jats:p><jats:p><jats:bold>References</jats:bold></jats:p><jats:p>1. https://energy.gov/eere/fuelcells /doe-technical-targets polymer-electrolyte-membrane-fuel-cell-components </jats:p><jats:p>2. T. A. Greszler, D. Caulk, and P. Sinha, <jats:italic>Journal of the Electrochemical Society,</jats:italic><jats:bold>159</jats:bold> (12), F831-F840 (2012). </jats:p><jats:p>3. H. Iden, S. Takaichi, Y. Furuya, T. Mashio, Y. Ono, and A. Ohma, <jats:italic>Journal of Electroanalytical Chemistry,</jats:italic><jats:bold>694</jats:bold> 37-44 (2013). </jats:p><jats:p>4. A. Kongkanand and M. F. Mathias, <jats:italic>Journal of Physical Chemistry Letters,</jats:italic><jats:bold>7</jats:bold> (7), 1127-1137 (2016).</jats:p>

Topics
  • density
  • impedance spectroscopy
  • surface
  • polymer
  • Carbon
  • Oxygen
  • current density