People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Chervin, Christopher N.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2019(Keynote) Effect of Architecturally Expressed Electrodes and Catalysts on Energy Storage/Conversion in Aqueous Electrolytes
- 2018Trapping a Ru₂O₃ Corundum-like Structure at Ultrathin, Disordered RuO₂ Nanoskins Expressed in 3D
- 2018Trapping a Ru2O3 Corundum-like Structure at Ultrathin, Disordered RuO2 Nanoskins Expressed in 3Dcitations
- 2017Demonstrating the Activity and Stability of Conformal RuO<sub>2</sub> "Nanoskins" on Technologically-Relevant, 3D Electrode Suports for Water Oxidation in Acid Electrolyte
- 2017Competitive Oxygen Evolution in Acid Electrolyte Catalyzed at Technologically Relevant Electrodes Painted with Nanoscale RuO2citations
- 2017Electroless Deposition of Disordered RuO<sub>2</sub> Nanoskins: An Example from the Fourth Quadrant of Electronic Materials
- 2016Aerogel Architectures Boost Oxygen‐Evolution Performance of NiFe2Ox Spinels to Activity Levels Commensurate with Nickel‐Rich Oxidescitations
Places of action
Organizations | Location | People |
---|
article
Electroless Deposition of Disordered RuO<sub>2</sub> Nanoskins: An Example from the Fourth Quadrant of Electronic Materials
Abstract
<jats:p>Our team at the Naval Research Laboratory has demonstrated that an ultrathin film of nanoscale, disordered ruthenium dioxide, designated RuO<jats:sub>2</jats:sub> nanoskin, can be deposited from commercially available precursors onto metal, ceramic, semiconductor, polymer, and salt substrates using scalable, atom-efficient, low-temperature, liquid-phase, self-limiting electroless deposition. The electrical conductivity of the resulting nanoskins can be tuned over three orders of magnitude by calcining without ripening the particles comprising the film. On the basis of optical, electrical, structural, thermal, microscopic, mechanical, electrochemical, and chemical state measurements, we categorize this disordered, nanoscale oxide as a member of a rare quadrant of electronic materials: one that exhibits a high concentration of electronic carriers (n) of low mobility (m). The remarkable physicochemical properties of RuO<jats:sub>2</jats:sub> nanoskins point to the importance of expressing functional materials in disordered, forms.</jats:p>