Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bussmann, Konrad M.

  • Google
  • 1
  • 10
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Electroless Deposition of Disordered RuO<sub>2</sub> Nanoskins: An Example from the Fourth Quadrant of Electronic Materialscitations

Places of action

Chart of shared publication
Osofsky, Michael S.
1 / 1 shared
Owrutsky, Jeffrey C.
1 / 2 shared
Donakowski, Martin D.
1 / 3 shared
Krowne, Clifford M.
1 / 1 shared
Chervin, Christopher N.
1 / 7 shared
Pala, Irina R.
1 / 3 shared
Charipar, Kristin M.
1 / 1 shared
Desario, Paul
1 / 25 shared
Rolison, Debra
1 / 14 shared
Melinger, Joseph S.
1 / 2 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Osofsky, Michael S.
  • Owrutsky, Jeffrey C.
  • Donakowski, Martin D.
  • Krowne, Clifford M.
  • Chervin, Christopher N.
  • Pala, Irina R.
  • Charipar, Kristin M.
  • Desario, Paul
  • Rolison, Debra
  • Melinger, Joseph S.
OrganizationsLocationPeople

article

Electroless Deposition of Disordered RuO<sub>2</sub> Nanoskins: An Example from the Fourth Quadrant of Electronic Materials

  • Osofsky, Michael S.
  • Owrutsky, Jeffrey C.
  • Donakowski, Martin D.
  • Krowne, Clifford M.
  • Chervin, Christopher N.
  • Bussmann, Konrad M.
  • Pala, Irina R.
  • Charipar, Kristin M.
  • Desario, Paul
  • Rolison, Debra
  • Melinger, Joseph S.
Abstract

<jats:p>Our team at the Naval Research Laboratory has demonstrated that an ultrathin film of nanoscale, disordered ruthenium dioxide, designated RuO<jats:sub>2</jats:sub> nanoskin, can be deposited from commercially available precursors onto metal, ceramic, semiconductor, polymer, and salt substrates using scalable, atom-efficient, low-temperature, liquid-phase, self-limiting electroless deposition. The electrical conductivity of the resulting nanoskins can be tuned over three orders of magnitude by calcining without ripening the particles comprising the film. On the basis of optical, electrical, structural, thermal, microscopic, mechanical, electrochemical, and chemical state measurements, we categorize this disordered, nanoscale oxide as a member of a rare quadrant of electronic materials: one that exhibits a high concentration of electronic carriers (n) of low mobility (m). The remarkable physicochemical properties of RuO<jats:sub>2</jats:sub> nanoskins point to the importance of expressing functional materials in disordered, forms.</jats:p>

Topics
  • Deposition
  • polymer
  • phase
  • mobility
  • semiconductor
  • ceramic
  • electrical conductivity
  • Ruthenium