Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Desario, Paul

  • Google
  • 25
  • 60
  • 547

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (25/25 displayed)

  • 2021STABILIZATION OF REACTIVE OXYGEN SPECIES IN CERIA-BASED COMPOSITE AEROGELScitations
  • 2021Synthesis and applications of WO3 nanosheets: the importance of phase, stoichiometry, and aspect ratio47citations
  • 2021Designing Oxide Aerogels with Enhanced Sorptive and Degradative Activity for Acute Chemical Threats12citations
  • 2021Photoenhanced Degradation of Sarin at Cu/TiO2 Composite Aerogels: Roles of Bandgap Excitation and Surface Plasmon Excitation.39citations
  • 2020Mesoporous Copper Nanoparticle/TiO2 Aerogels for Room-Temperature Hydrolytic Decomposition of the Chemical Warfare Simulant Dimethyl Methylphosphonate28citations
  • 2020Electronic Metal–Support Interactions in the Activation of CO Oxidation over a Cu/TiO2 Aerogel Catalyst26citations
  • 2020Stabilization of reduced copper on ceria aerogels for CO oxidation17citations
  • 2020Power of Aerogel Platforms to Explore Mesoscale Transport in Catalysis.14citations
  • 2019(Keynote) Effect of Architecturally Expressed Electrodes and Catalysts on Energy Storage/Conversion in Aqueous Electrolytescitations
  • 2019Thermoelectric Properties of Nanocrystalline Silicon Films Prepared by Hot-Wire and Plasma-Enhanced Chemical-Vapor Depositions3citations
  • 2018Trapping a Ru₂O₃ Corundum-like Structure at Ultrathin, Disordered RuO₂ Nanoskins Expressed in 3Dcitations
  • 2018(Invited) Nanoscale Design and Modification of Plasmonic Aerogels for Photocatalytic Hydrogen Generationcitations
  • 2018Trapping a Ru2O3 Corundum-like Structure at Ultrathin, Disordered RuO2 Nanoskins Expressed in 3D8citations
  • 2017Oxidation-stable plasmonic copper nanoparticles in photocatalytic TiO2 nanoarchitectures90citations
  • 2017Plasmonic Aerogels as a Three-Dimensional Nanoscale Platform for Solar Fuel Photocatalysis37citations
  • 2017Effects of Nanoscale Interfacial Design on Photocatalytic Hydrogen Generation Activity at Plasmonic Au–TiO<sub>2</sub> and Au–TiO<sub>2</sub>/Pt Aerogelscitations
  • 2017Demonstrating the Activity and Stability of Conformal RuO<sub>2</sub> "Nanoskins" on Technologically-Relevant, 3D Electrode Suports for Water Oxidation in Acid Electrolytecitations
  • 2017Oxidation−Stable Plasmonic Copper Nanoparticles in Photocatalytic TiO<sub>2</sub> Nanoarchitecturescitations
  • 2017Competitive Oxygen Evolution in Acid Electrolyte Catalyzed at Technologically Relevant Electrodes Painted with Nanoscale RuO253citations
  • 2017Electroless Deposition of Disordered RuO<sub>2</sub> Nanoskins: An Example from the Fourth Quadrant of Electronic Materialscitations
  • 2016Aerogel Architectures Boost Oxygen‐Evolution Performance of NiFe2Ox Spinels to Activity Levels Commensurate with Nickel‐Rich Oxides21citations
  • 2013Plasmonic enhancement of visible-light water splitting with Au-TiO2 composite aerogels.131citations
  • 2013Electron Tomography of Gold Nanoparticles in Titania Composite Aerogels: Probing Structure to Understand Photochemistrycitations
  • 2012Nanoscale structure of Ti1−xNbyO2 mixed-phase thin films: Distribution of crystal phase and dopantscitations
  • 2011Effect of oxygen deficiency on the photoresponse and reactivity of mixed phase titania thin films21citations

Places of action

Chart of shared publication
Jeon, Seokwoo
1 / 3 shared
Kim, Jin
1 / 1 shared
Novak, Travis G.
2 / 3 shared
Long, Jeffrey W.
3 / 4 shared
Rolison, Debra
12 / 14 shared
Balboa, Alex
2 / 2 shared
Pennington, Ashley
2 / 2 shared
Pitman, Catherine L.
3 / 3 shared
Pietron, Jeremy
11 / 11 shared
Pennington, Ashley M.
2 / 2 shared
Delia, Daniel
1 / 1 shared
Pitman, Catherine
2 / 2 shared
Maynes, Andrew
1 / 1 shared
Morris, John
1 / 1 shared
Barlow, Daniel
1 / 1 shared
Esparraguera, Liam F.
1 / 1 shared
Brintlinger, Todd
9 / 10 shared
Owrutsky, Jeff
2 / 2 shared
Yesinowski, James P.
1 / 1 shared
Glaser, Evan R.
1 / 1 shared
Dunkelberger, Adam D.
2 / 2 shared
Melinger, Joseph S.
2 / 2 shared
Johannes, Michelle
1 / 1 shared
Miller, Joel
1 / 1 shared
Long, Jeffrey
2 / 4 shared
Sassin, Megan B.
3 / 4 shared
Parker, Joseph F.
4 / 4 shared
Ko, Jesse
1 / 1 shared
Chervin, Christopher N.
7 / 7 shared
Hopkins, Brandon J.
1 / 1 shared
Stroud, Rhonda M.
3 / 3 shared
Kearney, Brian
1 / 1 shared
Liu, Xiao
1 / 2 shared
Culbertson, James C.
1 / 1 shared
Jugdersuren, Battogtokh
1 / 1 shared
Wang, Qi
1 / 9 shared
Nemeth, William
1 / 6 shared
Mansour, Azzam N.
2 / 2 shared
Donakowski, Martin D.
3 / 3 shared
Rolison, Debra R.
7 / 7 shared
Pala, Irina R.
3 / 3 shared
Stroud, Rhonda
3 / 3 shared
Dunkelberger, Adam
1 / 1 shared
Baturina, Olga
3 / 5 shared
Owrutsky, Jeffrey C.
2 / 2 shared
Mcentee, Monica
1 / 1 shared
Baturina, Olga A.
2 / 2 shared
Nelson, Eric S.
3 / 3 shared
Osofsky, Michael S.
1 / 1 shared
Krowne, Clifford M.
1 / 1 shared
Bussmann, Konrad M.
1 / 1 shared
Charipar, Kristin M.
1 / 1 shared
Miller, Bryan W.
1 / 1 shared
Devantier, Devyn E.
1 / 1 shared
Pietron, Jeremy J.
1 / 1 shared
Grahm, Michael E.
1 / 1 shared
Gray, Kimberly A.
2 / 3 shared
Wu, Jinsong
1 / 2 shared
Graham, Michael E.
1 / 1 shared
Chen, Le
1 / 2 shared
Chart of publication period
2021
2020
2019
2018
2017
2016
2013
2012
2011

Co-Authors (by relevance)

  • Jeon, Seokwoo
  • Kim, Jin
  • Novak, Travis G.
  • Long, Jeffrey W.
  • Rolison, Debra
  • Balboa, Alex
  • Pennington, Ashley
  • Pitman, Catherine L.
  • Pietron, Jeremy
  • Pennington, Ashley M.
  • Delia, Daniel
  • Pitman, Catherine
  • Maynes, Andrew
  • Morris, John
  • Barlow, Daniel
  • Esparraguera, Liam F.
  • Brintlinger, Todd
  • Owrutsky, Jeff
  • Yesinowski, James P.
  • Glaser, Evan R.
  • Dunkelberger, Adam D.
  • Melinger, Joseph S.
  • Johannes, Michelle
  • Miller, Joel
  • Long, Jeffrey
  • Sassin, Megan B.
  • Parker, Joseph F.
  • Ko, Jesse
  • Chervin, Christopher N.
  • Hopkins, Brandon J.
  • Stroud, Rhonda M.
  • Kearney, Brian
  • Liu, Xiao
  • Culbertson, James C.
  • Jugdersuren, Battogtokh
  • Wang, Qi
  • Nemeth, William
  • Mansour, Azzam N.
  • Donakowski, Martin D.
  • Rolison, Debra R.
  • Pala, Irina R.
  • Stroud, Rhonda
  • Dunkelberger, Adam
  • Baturina, Olga
  • Owrutsky, Jeffrey C.
  • Mcentee, Monica
  • Baturina, Olga A.
  • Nelson, Eric S.
  • Osofsky, Michael S.
  • Krowne, Clifford M.
  • Bussmann, Konrad M.
  • Charipar, Kristin M.
  • Miller, Bryan W.
  • Devantier, Devyn E.
  • Pietron, Jeremy J.
  • Grahm, Michael E.
  • Gray, Kimberly A.
  • Wu, Jinsong
  • Graham, Michael E.
  • Chen, Le
OrganizationsLocationPeople

article

Electroless Deposition of Disordered RuO<sub>2</sub> Nanoskins: An Example from the Fourth Quadrant of Electronic Materials

  • Osofsky, Michael S.
  • Owrutsky, Jeffrey C.
  • Donakowski, Martin D.
  • Krowne, Clifford M.
  • Chervin, Christopher N.
  • Bussmann, Konrad M.
  • Pala, Irina R.
  • Charipar, Kristin M.
  • Desario, Paul
  • Rolison, Debra
  • Melinger, Joseph S.
Abstract

<jats:p>Our team at the Naval Research Laboratory has demonstrated that an ultrathin film of nanoscale, disordered ruthenium dioxide, designated RuO<jats:sub>2</jats:sub> nanoskin, can be deposited from commercially available precursors onto metal, ceramic, semiconductor, polymer, and salt substrates using scalable, atom-efficient, low-temperature, liquid-phase, self-limiting electroless deposition. The electrical conductivity of the resulting nanoskins can be tuned over three orders of magnitude by calcining without ripening the particles comprising the film. On the basis of optical, electrical, structural, thermal, microscopic, mechanical, electrochemical, and chemical state measurements, we categorize this disordered, nanoscale oxide as a member of a rare quadrant of electronic materials: one that exhibits a high concentration of electronic carriers (n) of low mobility (m). The remarkable physicochemical properties of RuO<jats:sub>2</jats:sub> nanoskins point to the importance of expressing functional materials in disordered, forms.</jats:p>

Topics
  • Deposition
  • polymer
  • phase
  • mobility
  • semiconductor
  • ceramic
  • electrical conductivity
  • Ruthenium