People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Khosla, Ajit
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2023Highly Sensitive Electrochemical Non-Enzymatic Uric Acid Sensor Based on Cobalt Oxide Puffy Balls-like Nanostructurecitations
- 2022Internet-of-nano-things (IoNT) driven intelligent face masks to combat airborne health hazardcitations
- 2022Current Developments in CuS Based Hybrid Nanocomposite for Electrochemical Biosensor Application: A Short Reviewcitations
- 2020Flexible and Conductive 3D Printable Polyvinylidene Fluoride and Poly(N,N‐dimethylacrylamide) Based Gel Polymer Electrolytescitations
- 2018Printing of Silver Electrode on Para-Aramid Paper for Electrochemical Sensors
- 2017Ultrasonically Assisted Preparation of Carbon Fiber Doped Electriclly Conductive Micropatternable Nanocomposite Polymer for MEMS/Nems Applications
- 20173D Printing of Micromolds and Microfluidic Devicescitations
- 2017Oxygen Reduction Reaction As the Essential Process for Cathodic Electrodeposition of Metal Oxide Thin Films
Places of action
Organizations | Location | People |
---|
article
Oxygen Reduction Reaction As the Essential Process for Cathodic Electrodeposition of Metal Oxide Thin Films
Abstract
<jats:p><jats:bold>1. </jats:bold><jats:bold>Introduction </jats:bold></jats:p><jats:p> Oxygen reduction reaction (ORR) has frequently been employed to electrodeposit metal oxide thin films [1-4]. ORR can often be limited by mass transport of oxygen because of its low solubility in water. It is therefore important to precisely grasp bulk concentration of O<jats:sub>2</jats:sub> and its diffusion in a wide temperature range. Optically transparent electrodes such as F-doped SnO<jats:sub>2</jats:sub> (FTO) coated glass is often used as the substrate for the purpose of thin film characterization and device fabrication. So it is important to understand the kinetics of such electrodes for the ORR. In this study, we have carried out hydrodynamic electrochemical analysis employing rotating disk Pt and FTO electrodes (RDEs) to quantify each of these limiting factors.<jats:p>[1] T. Yoshida, K. Terada, D. Schlettwein, T. Oekermann, T. Sugiura, H. Minoura, Adv. Mater. 2000, 12, 1214. </jats:p><jats:p>[2] T. Yoshida, T. Oekermann, K. Okabe, D. Schlettwein, K. Funabiki, H. Minoura, Electrochemistry 2002, 70, 470. </jats:p><jats:p>[3] A. Goux, T. Pauporté, T. Yoshida, D. Lincot, Langmuir 2006, 22, 10 545. </jats:p><jats:p>[4] T. Yoshida, J. Zhang, D. Komatsu, S. Sawatani, H. Minoura, T. Pauporté, D. Lincot, T. Oekermann, D. Schlettwain, H. Tada, D. Wöhrle, K. Funabiki, M. Matsui, H. Miura and H. Yanagi, Adv. Func. Mater. 2009, 19, 17.</jats:p><jats:p></jats:p><jats:p><jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="916fig1.jpeg" xlink:type="simple" /></jats:inline-formula></jats:p><jats:p>Figure 1</jats:p><jats:p />