Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sun, Lina

  • Google
  • 3
  • 11
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2018Switching of Dye Loading Mechanism in Electrochemical Self-Assembly of Cu­SCN-D­AST Hybrid Thin Filmscitations
  • 2018Electrochemical Self-Assembly of Cu­SCN / Dye Hybrid Thin Films and Their Optical Propertiescitations
  • 2017Oxygen Reduction Reaction As the Essential Process for Cathodic Electrodeposition of Metal Oxide Thin Filmscitations

Places of action

Chart of shared publication
Yoshida, Tsukasa
3 / 9 shared
Nakamura, Tenshou
2 / 3 shared
Sariciftci, Niyazi Serdar
1 / 11 shared
Stadler, Philipp
1 / 3 shared
Okada, Shuji
2 / 2 shared
White, Matthew Schuette
3 / 3 shared
Masuhara, Akito
3 / 3 shared
Uda, Kyota
2 / 3 shared
Tsuda, Yuki
2 / 3 shared
Zhang, Jingbo
1 / 1 shared
Khosla, Ajit
1 / 8 shared
Chart of publication period
2018
2017

Co-Authors (by relevance)

  • Yoshida, Tsukasa
  • Nakamura, Tenshou
  • Sariciftci, Niyazi Serdar
  • Stadler, Philipp
  • Okada, Shuji
  • White, Matthew Schuette
  • Masuhara, Akito
  • Uda, Kyota
  • Tsuda, Yuki
  • Zhang, Jingbo
  • Khosla, Ajit
OrganizationsLocationPeople

article

Oxygen Reduction Reaction As the Essential Process for Cathodic Electrodeposition of Metal Oxide Thin Films

  • Yoshida, Tsukasa
  • Sun, Lina
  • White, Matthew Schuette
  • Masuhara, Akito
  • Zhang, Jingbo
  • Khosla, Ajit
Abstract

<jats:p><jats:bold>1. </jats:bold><jats:bold>Introduction </jats:bold></jats:p><jats:p> Oxygen reduction reaction (ORR) has frequently been employed to electrodeposit metal oxide thin films [1-4]. ORR can often be limited by mass transport of oxygen because of its low solubility in water. It is therefore important to precisely grasp bulk concentration of O<jats:sub>2</jats:sub> and its diffusion in a wide temperature range. Optically transparent electrodes such as F-doped SnO<jats:sub>2</jats:sub> (FTO) coated glass is often used as the substrate for the purpose of thin film characterization and device fabrication. So it is important to understand the kinetics of such electrodes for the ORR. In this study, we have carried out hydrodynamic electrochemical analysis employing rotating disk Pt and FTO electrodes (RDEs) to quantify each of these limiting factors.<jats:p>[1] T. Yoshida, K. Terada, D. Schlettwein, T. Oekermann, T. Sugiura, H. Minoura, Adv. Mater. 2000, 12, 1214. </jats:p><jats:p>[2] T. Yoshida, T. Oekermann, K. Okabe, D. Schlettwein, K. Funabiki, H. Minoura, Electrochemistry 2002, 70, 470. </jats:p><jats:p>[3] A. Goux, T. Pauporté, T. Yoshida, D. Lincot, Langmuir 2006, 22, 10 545. </jats:p><jats:p>[4] T. Yoshida, J. Zhang, D. Komatsu, S. Sawatani, H. Minoura, T. Pauporté, D. Lincot, T. Oekermann, D. Schlettwain, H. Tada, D. Wöhrle, K. Funabiki, M. Matsui, H. Miura and H. Yanagi, Adv. Func. Mater. 2009, 19, 17.</jats:p><jats:p></jats:p><jats:p><jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="916fig1.jpeg" xlink:type="simple" /></jats:inline-formula></jats:p><jats:p>Figure 1</jats:p><jats:p />

Topics
  • impedance spectroscopy
  • thin film
  • Oxygen
  • glass
  • glass
  • electrodeposition
  • electrochemical characterization method