Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tanabe, Toyokazu

  • Google
  • 4
  • 22
  • 48

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2017A Novel Approach for the Preparation of Carbon Supported Intermetallic Cu<sub>3</sub>sn Nanoparticles and Their Electrocatalytic Performance for CO<sub>2</sub> Reductioncitations
  • 2017Synthesis of Water-Resistant<sup> </sup>thin TiO<sub>x</sub> Layer-Coated High-Capacity LiNi <sub>a</sub> Co <sub>b</sub> Al<sub>1-a-B </sub>O<sub>2</sub> (a &gt; 0.85) Cathode and Its Stable Charge/Discharge Cycle Cathode Performance to Apply a Water-Based Hybrid Polymer Binder to Li-Ion Batteriescitations
  • 2017Application of Ordered Intermetallic Nanoparticles to Polymer Electrolyte Fuel Cellscitations
  • 2015Promoted C–C bond cleavage over intermetallic TaPt<sub>3</sub> catalyst toward low-temperature energy extraction from ethanol48citations

Places of action

Chart of shared publication
Kaneko, Shingo
3 / 3 shared
Liu, Yubin
3 / 4 shared
Miyauchi, Masahiro
1 / 1 shared
Ohsaka, Takeo
3 / 3 shared
Gunji, Takao
3 / 4 shared
Matsumoto, Futoshi
3 / 4 shared
Maki, Fumihiko
1 / 1 shared
Irii, Yuta
1 / 1 shared
Miyamoto, Koki
1 / 1 shared
Lee, Hojin -J
1 / 1 shared
Ugawa, Shinsaku
1 / 1 shared
Tsuda, Takashi
1 / 1 shared
Noguchi, Hidenori
1 / 1 shared
Umezawa, Naoto
1 / 1 shared
Fujita, Takeshi
1 / 4 shared
Manikandan, Maidhily
1 / 1 shared
Ueda, Shigenori
1 / 3 shared
Ramesh, Gubbala V.
1 / 1 shared
Kodiyath, Rajesh
1 / 1 shared
Abe, Hideki
1 / 1 shared
Koudelkova, Eva
1 / 1 shared
Ariga, Katsuhiko
1 / 11 shared
Chart of publication period
2017
2015

Co-Authors (by relevance)

  • Kaneko, Shingo
  • Liu, Yubin
  • Miyauchi, Masahiro
  • Ohsaka, Takeo
  • Gunji, Takao
  • Matsumoto, Futoshi
  • Maki, Fumihiko
  • Irii, Yuta
  • Miyamoto, Koki
  • Lee, Hojin -J
  • Ugawa, Shinsaku
  • Tsuda, Takashi
  • Noguchi, Hidenori
  • Umezawa, Naoto
  • Fujita, Takeshi
  • Manikandan, Maidhily
  • Ueda, Shigenori
  • Ramesh, Gubbala V.
  • Kodiyath, Rajesh
  • Abe, Hideki
  • Koudelkova, Eva
  • Ariga, Katsuhiko
OrganizationsLocationPeople

document

Application of Ordered Intermetallic Nanoparticles to Polymer Electrolyte Fuel Cells

  • Kaneko, Shingo
  • Tsuda, Takashi
  • Liu, Yubin
  • Tanabe, Toyokazu
  • Ohsaka, Takeo
  • Gunji, Takao
  • Matsumoto, Futoshi
Abstract

<jats:p>Our recent investigations of electrocatalysts for low temperature fuel cells have shown that ordered intermetallic compounds such as PtBi and PtPb have lower oxidation onset potentials and higher current densities for formic acid oxidation than pure Pt and Pd electrodes<jats:sup>1</jats:sup><jats:sup>,2)</jats:sup>. In this presentation, carbon black (CB)-supported Pt<jats:sub>3</jats:sub>Pb NPs was synthesized as catalysts for the formic acid oxidation and oxygen-reduction reaction. Atomically disordered and ordered intermetallic Pt<jats:sub>3</jats:sub>Pb NPs were prepared at room temperature using the polyol method. The Pt/carbon black (CB) and Pb(CH<jats:sub>3</jats:sub>COO)<jats:sub>2</jats:sub>•3H<jats:sub>2</jats:sub>O were dissolved in ethylene glycol. The mixture was sonicated and then treated in the flask under reflux for 1 min with 300-W microwave radiation. The mixture in the flask was cooled to room temperature with water. The mixture was again treated with microwave radiation (focused microwave instrument, CEM) at 300 W for 9 min. After the mixture cooled, Pt<jats:sub>3</jats:sub>Pb NPs/CB was collected by centrifugation, washed sequentially with methanol and dried under vacuum. The formation of ordered intermetallic Pt<jats:sub>3</jats:sub>Pb after annealing was confirmed by X-ray photoemission spectroscopy, powder X-ray diffraction, and a scanning transmission electron microscope with an electron-probe microanalyser (STEM). The surface structure of atomically disordered and ordered intermetallic Pt<jats:sub>3</jats:sub>Pb NPs was analyzed with high-resolution STEM. The relationship between the electrocatalytic activity and the surface structure was examined. </jats:p><jats:p>(1) Fuma Ando, Takao Gunji, Hikaru Fujima, Tsuyoshi Takeda, Toyokazu Tanabe, Shingo Kaneko, Futoshi Matsumoto, Preparation of PtPb/TiO2/Cup-Stacked Carbon Nanotube Composite for Enhancement of Electrocatalytic Reaction of Oxygen Reduction Reaction, <jats:italic>Chem Lett</jats:italic>., <jats:bold>44(12)</jats:bold>, 1741-1743(2015).</jats:p><jats:p>(2) Takao Gunji, Toyokazu Tanabe, Arockiam John Jeevagan, Sho Usui, Takashi Tsuda, Shingo Kaneko, Govindachetty Saravanan, Hideki Abe, Futoshi Matsumoto, Facile Route for the Preparation of Ordered Intermetallic Pt3Pb-PtPb Core-Shell Nanoparticles and Its Enhanced Activity for Alkaline Methanol and Ethanol Oxidation, <jats:italic>J. Power Sources</jats:italic>, <jats:bold>273</jats:bold>, 990-998(2014). </jats:p><jats:p></jats:p>

Topics
  • nanoparticle
  • surface
  • compound
  • polymer
  • Carbon
  • nanotube
  • Oxygen
  • composite
  • powder X-ray diffraction
  • annealing
  • intermetallic
  • centrifugation
  • spectroscopy