People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Liu, Yubin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2019Electrocatalytic conversion of carbon dioxide to formic acid over nanosized Cu<sub>6</sub>Sn<sub>5</sub> intermetallic compounds with a SnO<sub>2</sub> shell layercitations
- 2017A Novel Approach for the Preparation of Carbon Supported Intermetallic Cu<sub>3</sub>sn Nanoparticles and Their Electrocatalytic Performance for CO<sub>2</sub> Reduction
- 2017Synthesis of Water-Resistant<sup> </sup>thin TiO<sub>x</sub> Layer-Coated High-Capacity LiNi <sub>a</sub> Co <sub>b</sub> Al<sub>1-a-B </sub>O<sub>2</sub> (a > 0.85) Cathode and Its Stable Charge/Discharge Cycle Cathode Performance to Apply a Water-Based Hybrid Polymer Binder to Li-Ion Batteries
- 2017Application of Ordered Intermetallic Nanoparticles to Polymer Electrolyte Fuel Cells
Places of action
Organizations | Location | People |
---|
document
A Novel Approach for the Preparation of Carbon Supported Intermetallic Cu<sub>3</sub>sn Nanoparticles and Their Electrocatalytic Performance for CO<sub>2</sub> Reduction
Abstract
<jats:p>Carbon supported ordered intermetallic Cu<jats:sub>3</jats:sub>Sn nanoparticles (NPs), which had a Cu<jats:sub>3</jats:sub>Ti type structure (1), was successfully prepared through a wet-chemical method (2) using lithium triethylborohydride as reducing agent. The prepared ordered intermetallic Cu<jats:sub>3</jats:sub>Sn was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electronic microscope (TEM). Cu<jats:sub>3</jats:sub>Sn intermetallic structure not only showed a higher electrocatalytic activity towards CO<jats:sub>2</jats:sub> electrochemical reduction, but also selectively converted CO<jats:sub>2</jats:sub>to CO, compared with pure Cu NPs. </jats:p><jats:p>Figure 1 allows us to confirm the crystal structure of intermetallic Cu<jats:sub>3</jats:sub>Sn, disordered Cu-Sn alloy and pure Cu NPs, respectively. The main diffraction peaks of Cu NPs and disordered Cu-Sn alloy can be observed which are assigned as FCC-type structure while the XRD pattern of intermetallic NPs shows a good fit with stoichiometric Cu<jats:sub>3</jats:sub>Sn structure based on Cu<jats:sub>3</jats:sub>Ti-type lattice (1). Figure 2 shows the Faradaic efficiency (FE) for gaseous products which was evaluated in CO<jats:sub>2</jats:sub> reduction for intermetallic Cu<jats:sub>3</jats:sub>Sn under the potential varying from -0.8 V to -1.6 V <jats:italic>vs.</jats:italic>RHE. It is suggested that the FE of CO production reaches the highest value of 40 % at -1.4 V, while the FE of hydrogen production is suppressed under 17%. </jats:p><jats:p>[1] Y. Watanabe, <jats:italic>et al.</jats:italic>, <jats:italic>Acta Cryst., </jats:italic>B39, <jats:bold>1983</jats:bold>, 306-311. </jats:p><jats:p>[2] F. Wang. <jats:italic>et al.</jats:italic>, <jats:italic>J. Alloys Comp., </jats:italic>439, <jats:bold>2007,</jats:bold> 249–253.</jats:p><jats:p></jats:p><jats:p><jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1963fig1.jpeg" xlink:type="simple" /></jats:inline-formula></jats:p><jats:p>Figure 1</jats:p><jats:p />