People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nicolosi, Valeria
European Research Council
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (40/40 displayed)
- 2024Controlled Fabrication of Native Ultra-Thin Amorphous Gallium Oxide From 2D Gallium Sulfide for Emerging Electronic Applications
- 2024Dielectric Engineering of Perovskite BaMnO<sub>3</sub> for the Rapid Heterogeneous Nucleation of Pt Nanoparticles for Catalytic Applications
- 2024Liquid-Phase Exfoliation of Arsenic Trisulfide (As2S3) Nanosheets and Their Use as Anodes in Potassium-Ion Batteriescitations
- 2023Amorphous 2D-Nanoplatelets of Red Phosphorus Obtained by Liquid-Phase Exfoliation Yield High Areal Capacity Na-Ion Battery Anodescitations
- 2023Layered double hydroxide/boron nitride nanocomposite membranes for efficient separation and photodegradation of water-soluble dyescitations
- 2023MXene functionalized collagen biomaterials for cardiac tissue engineering driving iPSC-derived cardiomyocyte maturationcitations
- 2023Expanding the Perovskite Periodic Table to Include Chalcogenide Alloys with Tunable Band Gap Spanning 1.5–1.9 eVcitations
- 2023Amorphous 2D‐Nanoplatelets of Red Phosphorus Obtained by Liquid‐Phase Exfoliation Yield High Areal Capacity Na‐Ion Battery Anodescitations
- 2022Investigation of process by-products during the Selective Laser Melting of Ti6AL4V powdercitations
- 2022Laser-powder bed fusion of silicon carbide reinforced 316L stainless steel using a sinusoidal laser scanning strategycitations
- 2021Inclusion of 2d transition metal dichalcogenides in perovskite inks and their influence on solar cell performancecitations
- 20210D-1D hybrid silicon nanocomposite as lithium-ion batteries anodescitations
- 2020Investigation of process by-products during the Selective Laser Melting of Ti6AL4V powdercitations
- 2020Extra lithium-ion storage capacity enabled by liquid-phase exfoliated indium selenide nanosheets conductive networkcitations
- 2020Extra lithium-ion storage capacity enabled by liquid-phase exfoliated indium selenide nanosheets conductive networkcitations
- 2020Mechanism of stress relaxation and phase transformation in additively manufactured Ti-6Al-4V via in situ high temperature XRD and TEM analysescitations
- 20200D-1D hybrid silicon nanocomposite as lithium-ion batteries anodescitations
- 2019Silanization of silica nanoparticles and their processing as nanostructured micro-raspberry powders - a route to control the mechanical properties of isoprene rubber compositescitations
- 2018Colloidal core-satellite supraparticles via preprogramed burst of nanostructured micro-raspberry particlescitations
- 2018Tailored Nickel-Iron Layered Double Hydroxide Particle Size for Optimized O.E.R. Catalysis
- 2018Low-temperature synthesis and investigation into the formation mechanism of high quality Ni-Fe layered double hydroxides hexagonal plateletscitations
- 2018Stamping of Flexible, Coplanar Micro-Supercapacitors Using MXene Inkscitations
- 2018Structural transformation of layered double hydroxides: An in situ TEM analysiscitations
- 2018Percolating metallic structures templated on laser-deposited carbon nanofoams derived from graphene oxide: applications in humidity sensingcitations
- 2018Enhanced thermoelectric performance of Bi-Sb-Te/Sb2O3 nanocomposites by energy filtering effectcitations
- 2018A comprehensive analysis of extrusion behavior, microstructural evolution, and mechanical properties of 6063 Al–B4C composites produced by semisolid stir castingcitations
- 2017Low-temperature synthesis of high quality Ni-Fe layered double hydroxides hexagonal platelets
- 2017Enabling Flexible Heterostructures for Li-Ion Battery Anodes Based on Nanotube and Liquid-Phase Exfoliated 2D Gallium Chalcogenide Nanosheet Colloidal Solutionscitations
- 2016In-Situ TEM Analysis of Ink-Jet Printed MnO<sub>2</sub>-Graphene for Supercapacitor Electrodes
- 2016Thin-Film Supercapacitor Electrodes Based on Nanomaterials Processed By Ultrasound Irradiation
- 2016Production of Ni(OH) 2 nanosheets by liquid phase exfoliation: From optical properties to electrochemical applicationscitations
- 2016Pushing up the magnetisation values for iron oxide nanoparticles via zinc doping: X-ray studies on the particle's sub-nano structure of different synthesis routescitations
- 2015Basal-Plane Functionalization of Chemically Exfoliated Molybdenum Disulfide by Diazonium Saltscitations
- 2014Supercapacitor Electrodes of MnO<sub>2</sub> and MnO<sub>2</sub>/Graphene Nanosheets Synthesized by Liquid Phase Exfoliation
- 2014Production of Molybdenum Trioxide Nanosheets by Liquid Exfoliation and Their Application in High-Performance Supercapacitorscitations
- 2014Hybrids of 2D-Nanomaterials for Supercapacitor/Battery Applications
- 2013Liquid Exfoliation of Layered Materialscitations
- 2012Covalently functionalized hexagonal boron nitride nanosheets by nitrene addition
- 2008High-yield production of graphene by liquid-phase exfoliation of graphitecitations
- 2008High-yield production of graphene by liquid-phase exfoliation of graphitecitations
Places of action
Organizations | Location | People |
---|
document
Thin-Film Supercapacitor Electrodes Based on Nanomaterials Processed By Ultrasound Irradiation
Abstract
<jats:p>Materials at nanoscale usually present enhanced or even new and exotic properties in comparison with their bulk counterparts. Therefore, nanoparticles have been widely regarded as potential candidates for new technological developments. In the specific case of energy storage applications, such as supercapacitors and batteries, nanomaterials offer high surface areas and shorter transport paths for both electrons and ions.<jats:sup>1</jats:sup> Thus considerably improving these devices performance. Therefore, for the last couple of years, several techniques for nanomaterials synthesis have been proposed, such as mechanical exfoliation. However, most of them are only suited for laboratory scale applications due to their low production yield. In fact, the development of suitable productions methods is a key to fully exploit the advantageous properties of nanomaterials before their use in large scale industrial applications. In this context, the processing of nanomaterials by ultrasound irradiation has been regarded as one of the most feasible options for the production of highly stable nanomaterials dispersions. Besides being highly scalable, this approach is simple, cost-effective and environment friendly. Several nanomaterials, such as graphene,<jats:sup>2</jats:sup> carbon nanotubes<jats:sup>3</jats:sup> and transition metal dichalcogenides<jats:sup>4</jats:sup> have already been successfully obtained by ultrasound processing. </jats:p><jats:p>In this work, it is presented an overview of the electrochemical properties of thin film supercapacitor/battery electrodes based on nanomaterials prepared by ultrasound irradiation. A variety of systems, from the most common materials, such as manganese oxide and lithium titanate, to more exotic ones, such as V<jats:sub>2</jats:sub>O<jats:sub>5</jats:sub> and GaSe, have been carefully processed, characterized and tested for energy storage applications. It is also exhibited the concept of co-exfoliation, where the properties of two different materials (MnO<jats:sub>2</jats:sub> and graphene) are combined in order to obtain a highly efficient composite in a cost-effective and scalable one-step approach. </jats:p><jats:p>This work intends to demonstrate the remarkable potential of nanomaterials/composites processed by ultrasound irradiation for the future design and manufacture of energy storage devices with an enhanced electrochemical performance. </jats:p><jats:p>References: </jats:p><jats:p>1. Ma, R.; Sasaki, T., Nanosheets of Oxides and Hydroxides: Ultimate 2D Charge-Bearing Functional Crystallites. <jats:italic>Adv. Mater. </jats:italic><jats:bold>2010,</jats:bold><jats:italic>22</jats:italic> (45), 5082-5104. </jats:p><jats:p>2. O’Neill, A.; Khan, U.; Nirmalraj, P. N.; Boland, J.; Coleman, J. N., Graphene Dispersion and Exfoliation in Low Boiling Point Solvents. <jats:italic>The Journal of Physical Chemistry C </jats:italic><jats:bold>2011,</jats:bold><jats:italic>115</jats:italic> (13), 5422-5428. </jats:p><jats:p>3. Bergin, S. D.; Nicolosi, V.; Streich, P. V.; Giordani, S.; Sun, Z.; Windle, A. H.; Ryan, P.; Niraj, N. P. P.; Wang, Z.-T. T.; Carpenter, L.; Blau, W. J.; Boland, J. J.; Hamilton, J. P.; Coleman, J. N., Towards Solutions of Single-Walled Carbon Nanotubes in Common Solvents. <jats:italic>Adv. Mater. </jats:italic><jats:bold>2008,</jats:bold><jats:italic>20</jats:italic> (10), 1876-1881. </jats:p><jats:p>4. Nicolosi, V.; Chhowalla, M.; Kanatzidis, M. G.; Strano, M. S.; Coleman, J. N., Liquid Exfoliation of Layered Materials. <jats:italic>Science </jats:italic><jats:bold>2013,</jats:bold><jats:italic>340</jats:italic> (6139).</jats:p>