People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Singh, Kalpana
University of Oslo
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2022Recent advances, practical challenges, and perspectives of intermediate temperature solid oxide fuel cell cathodescitations
- 2020Studies on effect of Ca-doping on structure and electrochemical properties of garnet-type Y 3-x Ca x Fe 5 O 12-δcitations
- 2020Investigating the effect of Cu-doping on the electrochemical properties of perovskite-type Ba 0.5 Sr 0.5 Fe 1-x Cu x O 3-δ (0 ≤ x ≤ 0.20) cathodescitations
- 2019Perspective of perovskite-type oxides for proton conducting solid oxide fuel cellscitations
- 2019Electrical Properties of Hollandite-Type Ba1.33Ga2.67Ti5.33O16, K1.33Ga1.33Ti6.67O16, and K1.54Mg0.77Ti7.23O16citations
- 2019Investigating Phase and Electrical Properties of Calcium-Doped Yttrium Iron Garnet
- 2018High performance tubular solid oxide fuel cell based on Ba 0.5 Sr 0.5 Ce 0.6 Zr 0.2 Gd 0.1 Y 0.1 O 3-δ proton conducting electrolytecitations
- 2018Amine-Functionalized Al-MOF#at y x Sm 2 O 3 ZnO:A Visible Light-Driven Nanocomposite with Excellent Photocatalytic Activity for the Photo-Degradation of Amoxicillincitations
- 2016Grain Boundary Space Charge Effect and Proton Dynamics in Chemically Stable Perovskite-Type Ba 0.5 Sr 0.5 Ce 0.6 Zr 0.2 Gd 0.1 Y 0.1 O 3-δ (BSCZGY):A Case Study on Effect of Sintering Temperaturecitations
- 2016(Invited) Multi-Element-Doped Ceria-Based Metal Oxides for Advanced Proton Conducting SOFCs
- 2016Electrochemical studies of Gd 0.5 Pr 0.5 BaCo 2 O 5 + δ (GPBC) cathode for oxide ion and proton conducting solid oxide fuel cellscitations
- 2016Synthesis and characterisation of ceramic proton conducting perovskite-type multi-element-doped Ba 0.5 Sr 0.5 Ce 1−x−y−z Zr x Gd y Y z O 3−δ (0 < x < 0.5; y = 0, 0.1, 0.15; z = 0.1, 0.2)citations
- 2014Chemical reactivity between Ce 0.7 RE 0.2 Mo 0.1 O 2 (RE = Y, Sm) and 8YSZ, and conductivity studies of their solid solutionscitations
- 2013Amphoteric oxide semiconductors for energy conversion devices:A tutorial reviewcitations
Places of action
Organizations | Location | People |
---|
article
(Invited) Multi-Element-Doped Ceria-Based Metal Oxides for Advanced Proton Conducting SOFCs
Abstract
<jats:p>The ability of solid oxide fuel cells (SOFC) to convert the chemical energy of various kinds of fuels into electricity at high efficiency, and with reduced environmental impacts makes them an attractive technology for current and future plans for clean power generation. State-of-the-art yttria-stabilised ZrO<jats:sub>2</jats:sub> (YSZ) electrolyte shows high conductivity (10<jats:sup>-2 </jats:sup>S/cm) at about 1000 °C [1]. However, the high operating temperature leads to durability and cost issues and hinders its full market implementation. Operating temperature of SOFCs can be lowered by employing ceramic proton conducting electrolytes based on doped- BaCeO<jats:sub>3</jats:sub> which exhibits high proton conductivity (10<jats:sup>-2</jats:sup> S/cm) in the intermediate temperature (IT, 400-700 °C) range [2]. However, the poor chemical stability of doped-BaCeO<jats:sub>3</jats:sub> under SOFC by-products CO<jats:sub>2,</jats:sub> and H<jats:sub>2</jats:sub>O limits its use as stable electrolyte [2]. </jats:p><jats:p>Here we report, perovskite–type Ba<jats:sub>0.5</jats:sub>Sr<jats:sub>0.5</jats:sub>Ce<jats:sub>1-<jats:italic>x-y-z</jats:italic></jats:sub>Zr<jats:italic><jats:sub>x</jats:sub></jats:italic>Gd<jats:italic><jats:sub>y</jats:sub></jats:italic>Y<jats:italic><jats:sub>z</jats:sub></jats:italic>O<jats:sub>3-δ </jats:sub>as proton conductors for IT-SOFCs [3]. A-and B-site of BaCeO<jats:sub>3</jats:sub> were doped by more electronegative elements to improve its chemical stability under H<jats:sub>2</jats:sub>O and CO<jats:sub>2</jats:sub> at elevated temperature. In terms of chemical stability and conductivity, Ba<jats:sub>0.5</jats:sub>Sr<jats:sub>0.5</jats:sub>Ce<jats:sub>0.6</jats:sub>Zr<jats:sub>0.2</jats:sub>Gd<jats:sub>0.1</jats:sub>Y<jats:sub>0.1</jats:sub>O<jats:sub>3-δ </jats:sub>seems to be the optimal composition with conductivity of 10<jats:sup>-3 </jats:sup>S/cm at 700 °C in 3% H<jats:sub>2</jats:sub>O/H<jats:sub>2</jats:sub>. Open circuit voltage of 1.15 V at 700 °C for H<jats:sub>2</jats:sub>-air cell suggests pure ionic (proton) conduction in Ba<jats:sub>0.5</jats:sub>Sr<jats:sub>0.5</jats:sub>Ce<jats:sub>0.6</jats:sub>Zr<jats:sub>0.2</jats:sub>Gd<jats:sub>0.1</jats:sub>Y<jats:sub>0.1</jats:sub>O<jats:sub>3-δ</jats:sub> [3]. The effect of sintering temperature on bulk and grain boundary conductivity of these oxides was investigated using dielectric loss spectroscopy [4]. Moreover, the difference in the relaxation times in the current study suggests that short-range and long-range proton dynamics seems to be differing to previous studies on Y-doped BaZrO<jats:sub>3</jats:sub> systems [5]. Additionally, layered perovskite-type Gd<jats:sub>0.5</jats:sub>Pr<jats:sub>0.5</jats:sub>BaCo<jats:sub>2</jats:sub>O<jats:sub>5+δ</jats:sub> were characterised as cathode for H-SOFCs [6]. Symmetrical cell measurements under air and wet air gave an area specific resistance of 2.4 Ω cm<jats:sup>2</jats:sup> and 1.9 Ω cm<jats:sup>2</jats:sup> for oxygen reduction reaction at 700 °C [6]. The effect of phase purity and synthesis methods on the electrochemical performance of Ni+Ba<jats:sub>0.5</jats:sub>Sr<jats:sub>0.5</jats:sub>Ce<jats:sub>0.6</jats:sub>Zr<jats:sub>0.2</jats:sub>Gd<jats:sub>0.1</jats:sub>Y<jats:sub>0.1</jats:sub>O<jats:sub>3</jats:sub><jats:sub>-δ</jats:sub> anode composites was investigated through symmetrical cell measurements in 3% H<jats:sub>2</jats:sub>O/H<jats:sub>2. </jats:sub></jats:p><jats:p><jats:bold>References</jats:bold></jats:p><jats:p>1) J. W. Fergus, R. Hui, X. Li, D. P. Wilkinson, J. Zhang, Solid Oxide Fuel Cells: Materials Properties and Performance, CRC Press, New York (2009). </jats:p><jats:p>2) K. D. Kreuer, Annu. Rev. Mater. Res. 33 (2003) 333. </jats:p><jats:p>3) R. Kannan, K. Singh, S. Gill, T. Fürstenhaupt, V. Thangadurai, Sci. Reports. 3 (2013) 2138. </jats:p><jats:p>4) K. Singh, A. Baral, V. Thangadurai, J. Am. Ceram. Soc. 99 (2016) 866. </jats:p><jats:p>5) Y. Yamazaki, F. Blanc, Y. Okuyama, L. Buannic L, J. C. Lucio-Vega, C. P. Grey, S. M. Haile, Nat. Mater. 12 (2013) 647. </jats:p><jats:p>6) K. Singh, A. K. Baral, V. Thangadurai, Solid State Ionics (2016) DOI:10.1016/j.ssi.2015.12.010.</jats:p>