Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Singh, Kalpana

  • Google
  • 14
  • 23
  • 499

University of Oslo

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (14/14 displayed)

  • 2022Recent advances, practical challenges, and perspectives of intermediate temperature solid oxide fuel cell cathodes143citations
  • 2020Studies on effect of Ca-doping on structure and electrochemical properties of garnet-type Y 3-x Ca x Fe 5 O 12-δ3citations
  • 2020Investigating the effect of Cu-doping on the electrochemical properties of perovskite-type Ba 0.5 Sr 0.5 Fe 1-x Cu x O 3-δ (0 ≤ x ≤ 0.20) cathodes23citations
  • 2019Perspective of perovskite-type oxides for proton conducting solid oxide fuel cells55citations
  • 2019Electrical Properties of Hollandite-Type Ba1.33Ga2.67Ti5.33O16, K1.33Ga1.33Ti6.67O16, and K1.54Mg0.77Ti7.23O169citations
  • 2019Investigating Phase and Electrical Properties of Calcium-Doped Yttrium Iron Garnetcitations
  • 2018High performance tubular solid oxide fuel cell based on Ba 0.5 Sr 0.5 Ce 0.6 Zr 0.2 Gd 0.1 Y 0.1 O 3-δ proton conducting electrolyte27citations
  • 2018Amine-Functionalized Al-MOF#at y x Sm 2 O 3 ZnO:A Visible Light-Driven Nanocomposite with Excellent Photocatalytic Activity for the Photo-Degradation of Amoxicillin96citations
  • 2016Grain Boundary Space Charge Effect and Proton Dynamics in Chemically Stable Perovskite-Type Ba 0.5 Sr 0.5 Ce 0.6 Zr 0.2 Gd 0.1 Y 0.1 O 3-δ (BSCZGY):A Case Study on Effect of Sintering Temperature14citations
  • 2016(Invited) Multi-Element-Doped Ceria-Based Metal Oxides for Advanced Proton Conducting SOFCscitations
  • 2016Electrochemical studies of Gd 0.5 Pr 0.5 BaCo 2 O 5 + δ (GPBC) cathode for oxide ion and proton conducting solid oxide fuel cells15citations
  • 2016Synthesis and characterisation of ceramic proton conducting perovskite-type multi-element-doped Ba 0.5 Sr 0.5 Ce 1−x−y−z Zr x Gd y Y z O 3−δ (0 < x < 0.5; y = 0, 0.1, 0.15; z = 0.1, 0.2)20citations
  • 2014Chemical reactivity between Ce 0.7 RE 0.2 Mo 0.1 O 2 (RE = Y, Sm) and 8YSZ, and conductivity studies of their solid solutions4citations
  • 2013Amphoteric oxide semiconductors for energy conversion devices:A tutorial review90citations

Places of action

Chart of shared publication
Thangadurai, Venkataraman
14 / 88 shared
Ndubuisi, Amanda
1 / 2 shared
Abouali, Sara
1 / 2 shared
Dynes, James J.
1 / 1 shared
Zhang, Zheyu
2 / 3 shared
Tsur, Yoed
1 / 3 shared
Zhou, Jigang
1 / 1 shared
Abubaker, Orrsam Aadil
1 / 1 shared
Kannan, Ramaiyan
2 / 3 shared
Kan, Wang Hay
2 / 9 shared
Cao, Can
1 / 1 shared
Avdeev, Maxim
1 / 13 shared
Etsell, Thomas H.
1 / 1 shared
Hanifi, Amir Reza
1 / 1 shared
Sandhu, Navjot Kaur
1 / 1 shared
Amiri, Taghi
1 / 1 shared
Luo, Jing Li
1 / 1 shared
Sarkar, Partha
1 / 1 shared
Huq, Ashfia
1 / 2 shared
Patton, Bailey
1 / 1 shared
Baral, Ashok Kumar
1 / 3 shared
Baral, Ashok K.
1 / 1 shared
Nowotny, Janusz
1 / 2 shared
Chart of publication period
2022
2020
2019
2018
2016
2014
2013

Co-Authors (by relevance)

  • Thangadurai, Venkataraman
  • Ndubuisi, Amanda
  • Abouali, Sara
  • Dynes, James J.
  • Zhang, Zheyu
  • Tsur, Yoed
  • Zhou, Jigang
  • Abubaker, Orrsam Aadil
  • Kannan, Ramaiyan
  • Kan, Wang Hay
  • Cao, Can
  • Avdeev, Maxim
  • Etsell, Thomas H.
  • Hanifi, Amir Reza
  • Sandhu, Navjot Kaur
  • Amiri, Taghi
  • Luo, Jing Li
  • Sarkar, Partha
  • Huq, Ashfia
  • Patton, Bailey
  • Baral, Ashok Kumar
  • Baral, Ashok K.
  • Nowotny, Janusz
OrganizationsLocationPeople

article

(Invited) Multi-Element-Doped Ceria-Based Metal Oxides for Advanced Proton Conducting SOFCs

  • Thangadurai, Venkataraman
  • Singh, Kalpana
Abstract

<jats:p>The ability of solid oxide fuel cells (SOFC) to convert the chemical energy of various kinds of fuels into electricity at high efficiency, and with reduced environmental impacts makes them an attractive technology for current and future plans for clean power generation. State-of-the-art yttria-stabilised ZrO<jats:sub>2</jats:sub> (YSZ) electrolyte shows high conductivity (10<jats:sup>-2 </jats:sup>S/cm) at about 1000 °C [1]. However, the high operating temperature leads to durability and cost issues and hinders its full market implementation. Operating temperature of SOFCs can be lowered by employing ceramic proton conducting electrolytes based on doped- BaCeO<jats:sub>3</jats:sub> which exhibits high proton conductivity (10<jats:sup>-2</jats:sup> S/cm) in the intermediate temperature (IT, 400-700 °C) range [2]. However, the poor chemical stability of doped-BaCeO<jats:sub>3</jats:sub> under SOFC by-products CO<jats:sub>2,</jats:sub> and H<jats:sub>2</jats:sub>O limits its use as stable electrolyte [2]. </jats:p><jats:p>Here we report, perovskite–type Ba<jats:sub>0.5</jats:sub>Sr<jats:sub>0.5</jats:sub>Ce<jats:sub>1-<jats:italic>x-y-z</jats:italic></jats:sub>Zr<jats:italic><jats:sub>x</jats:sub></jats:italic>Gd<jats:italic><jats:sub>y</jats:sub></jats:italic>Y<jats:italic><jats:sub>z</jats:sub></jats:italic>O<jats:sub>3-δ </jats:sub>as proton conductors for IT-SOFCs [3]. A-and B-site of BaCeO<jats:sub>3</jats:sub> were doped by more electronegative elements to improve its chemical stability under H<jats:sub>2</jats:sub>O and CO<jats:sub>2</jats:sub> at elevated temperature. In terms of chemical stability and conductivity, Ba<jats:sub>0.5</jats:sub>Sr<jats:sub>0.5</jats:sub>Ce<jats:sub>0.6</jats:sub>Zr<jats:sub>0.2</jats:sub>Gd<jats:sub>0.1</jats:sub>Y<jats:sub>0.1</jats:sub>O<jats:sub>3-δ </jats:sub>seems to be the optimal composition with conductivity of 10<jats:sup>-3 </jats:sup>S/cm at 700 °C in 3% H<jats:sub>2</jats:sub>O/H<jats:sub>2</jats:sub>. Open circuit voltage of 1.15 V at 700 °C for H<jats:sub>2</jats:sub>-air cell suggests pure ionic (proton) conduction in Ba<jats:sub>0.5</jats:sub>Sr<jats:sub>0.5</jats:sub>Ce<jats:sub>0.6</jats:sub>Zr<jats:sub>0.2</jats:sub>Gd<jats:sub>0.1</jats:sub>Y<jats:sub>0.1</jats:sub>O<jats:sub>3-δ</jats:sub> [3]. The effect of sintering temperature on bulk and grain boundary conductivity of these oxides was investigated using dielectric loss spectroscopy [4]. Moreover, the difference in the relaxation times in the current study suggests that short-range and long-range proton dynamics seems to be differing to previous studies on Y-doped BaZrO<jats:sub>3</jats:sub> systems [5]. Additionally, layered perovskite-type Gd<jats:sub>0.5</jats:sub>Pr<jats:sub>0.5</jats:sub>BaCo<jats:sub>2</jats:sub>O<jats:sub>5+δ</jats:sub> were characterised as cathode for H-SOFCs [6]. Symmetrical cell measurements under air and wet air gave an area specific resistance of 2.4 Ω cm<jats:sup>2</jats:sup> and 1.9 Ω cm<jats:sup>2</jats:sup> for oxygen reduction reaction at 700 °C [6]. The effect of phase purity and synthesis methods on the electrochemical performance of Ni+Ba<jats:sub>0.5</jats:sub>Sr<jats:sub>0.5</jats:sub>Ce<jats:sub>0.6</jats:sub>Zr<jats:sub>0.2</jats:sub>Gd<jats:sub>0.1</jats:sub>Y<jats:sub>0.1</jats:sub>O<jats:sub>3</jats:sub><jats:sub>-δ</jats:sub> anode composites was investigated through symmetrical cell measurements in 3% H<jats:sub>2</jats:sub>O/H<jats:sub>2. </jats:sub></jats:p><jats:p><jats:bold>References</jats:bold></jats:p><jats:p>1) J. W. Fergus, R. Hui, X. Li, D. P. Wilkinson, J. Zhang, Solid Oxide Fuel Cells: Materials Properties and Performance, CRC Press, New York (2009). </jats:p><jats:p>2) K. D. Kreuer, Annu. Rev. Mater. Res. 33 (2003) 333. </jats:p><jats:p>3) R. Kannan, K. Singh, S. Gill, T. Fürstenhaupt, V. Thangadurai, Sci. Reports. 3 (2013) 2138. </jats:p><jats:p>4) K. Singh, A. Baral, V. Thangadurai, J. Am. Ceram. Soc. 99 (2016) 866. </jats:p><jats:p>5) Y. Yamazaki, F. Blanc, Y. Okuyama, L. Buannic L, J. C. Lucio-Vega, C. P. Grey, S. M. Haile, Nat. Mater. 12 (2013) 647. </jats:p><jats:p>6) K. Singh, A. K. Baral, V. Thangadurai, Solid State Ionics (2016) DOI:10.1016/j.ssi.2015.12.010.</jats:p>

Topics
  • perovskite
  • grain
  • phase
  • grain boundary
  • Oxygen
  • layered
  • composite
  • chemical stability
  • durability
  • additive manufacturing
  • sintering
  • spectroscopy