Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lovera, Pierre

  • Google
  • 1
  • 12
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016A Universal Surface for Label-Free Electrical and Optical Sensing of Disease Markerscitations

Places of action

Chart of shared publication
Tarasov, Alexey
1 / 1 shared
Tsai, Meng-Yen
1 / 1 shared
Mooney, Mark H.
1 / 1 shared
Vogel, Eric M.
1 / 2 shared
Riordan, Alan O.
1 / 1 shared
Joiner, Corey A.
1 / 1 shared
Taylor, Robert
1 / 3 shared
Flynn, Erin M.
1 / 1 shared
Montrose, Armelle
1 / 1 shared
Creedon, Niamh
1 / 1 shared
Shields, Niall
1 / 1 shared
Gray, Darren
1 / 1 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Tarasov, Alexey
  • Tsai, Meng-Yen
  • Mooney, Mark H.
  • Vogel, Eric M.
  • Riordan, Alan O.
  • Joiner, Corey A.
  • Taylor, Robert
  • Flynn, Erin M.
  • Montrose, Armelle
  • Creedon, Niamh
  • Shields, Niall
  • Gray, Darren
OrganizationsLocationPeople

article

A Universal Surface for Label-Free Electrical and Optical Sensing of Disease Markers

  • Tarasov, Alexey
  • Tsai, Meng-Yen
  • Mooney, Mark H.
  • Vogel, Eric M.
  • Riordan, Alan O.
  • Lovera, Pierre
  • Joiner, Corey A.
  • Taylor, Robert
  • Flynn, Erin M.
  • Montrose, Armelle
  • Creedon, Niamh
  • Shields, Niall
  • Gray, Darren
Abstract

<jats:p>Quantitative point-of-care (POC) diagnostic tools are crucial for next-generation human (and animal) health monitoring and disease diagnosis to rapidly infer effective treatment decisions. ELISA based disease diagnostics is often performed off-site in centralized labs, requiring long turnaround times (&gt;72hrs), reducing the effective period for disease intervention. In this study, a gold sensing surface is shown to provide ELISA-equivalent results across multiple label-free and rapid biosensing platforms including potentiometric field-effect transistor (FET) biosensors, electrochemical impedance spectroscopy (EIS) biosensors and surface plasmon resonance (SPR) devices.  Using the model pathogen Bovine Herpes Virus 1 (BHV-1) (a major source of economic loss in the agri-food industry globally <jats:sup>1</jats:sup>), BHV-1 glycoprotein E (gE) was attached to sensor surfaces to detect the immunological interaction against anti-BHV-1 antibodies. The use of a gold sensing surface offers access to the well-established thiol surface functionalization and protein immobilization via amine coupling. This functionalized gold sensing surface is used to compare the response of ELISA in four different sensing platforms: (1) as the gate electrode for graphene ion-sensitive field-effect transistor (ISFET), (2) as the gate electrode for extended-gate field-effect transistor (EGFET) sensors (3) as the working electrode (WE) for EIS sensors, and (4) as the sensing surface for SPR.  </jats:p><jats:p>The results show that the sensitivity of the EGFET biosensors is equivalent to the ISFETs.<jats:sup>2</jats:sup> Moreover, EGFET biosensors provide many advantages including improved reliability by separating the sensor and transducer components, low-cost and easy fabrication, disposable chip design and high compatibility with state-of-art semiconductor technologies.<jats:sup>3-5</jats:sup> While the mechanism for EIS is quite different than potentiometric FET-based sensing, the dynamic response is found to be equivalent. Similarly, the same Au surface can be used in optical SPR biosensors using the same surface chemistry. The universality of a Au sensing surface allows detection using multi-platforms but with a single chip and, therefore, simplifies the sample preparation and reduces the required sample volumes for diagnostics. All three electrical sensors demonstrate performance equivalent to SPR and ELISA, with dynamic range approaching the limit of detection for sera dilutions &lt; 10<jats:sup>-3</jats:sup>of anti-BHV-1 antiserum. However, the potentiometric and EIS sensors provide results much faster (~10 min.) than SPR (~2 hr.) and ELISA (&gt; 20 hr.) Additionally, the electronic biosensors are compact in size and are promising for POC devices. </jats:p><jats:p>In conclusion, a gold surface is shown to provide universal and equivalent sensing across multiple platforms using well-established surface chemistry. Furthermore, the use of one surface to facilitate integration of multiple sensing mechanisms can potentially improve specificity. Among all of the available biosensor technologies, electrical biosensors provide rapid, label-free and cost-efficient sensing capability in a compact size, which is promising for quantitative point-of-care devices. </jats:p><jats:p><jats:sup>1</jats:sup>G. D. Snowder <jats:italic>et al.</jats:italic><jats:italic>Journal of Animal Science </jats:italic><jats:bold>85</jats:bold>, 1885 (2007). </jats:p><jats:p><jats:sup>2</jats:sup>A. Tarasov <jats:italic>et al</jats:italic>. <jats:italic>2D Materials </jats:italic><jats:bold>2</jats:bold>, 044008 (2015). </jats:p><jats:p><jats:sup>3</jats:sup>L.-L. Chi <jats:italic>et al.</jats:italic><jats:italic>Materials Chemistry and Physics <jats:bold>63</jats:bold></jats:italic>, 19 (2000). </jats:p><jats:p><jats:sup>4</jats:sup>P. Dak <jats:italic>et al</jats:italic>. Device Research Conference (DRC), 2013 71st Annual, 105 (2013). </jats:p><jats:p><jats:sup>5</jats:sup>W. Guan <jats:italic>et al.</jats:italic><jats:italic>Biosensors and Bioelectronics </jats:italic><jats:bold>51</jats:bold>, 225 (2014).</jats:p>

Topics
  • surface
  • semiconductor
  • gold
  • electrochemical-induced impedance spectroscopy
  • functionalization
  • amine
  • field-effect transistor method
  • surface plasmon resonance spectroscopy