Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tomar, Maharaj

  • Google
  • 1
  • 2
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015Carbon Wrapped Sulfur Cathode Materials for Rechargeable Batteriescitations

Places of action

Chart of shared publication
Kumar, Arun
1 / 21 shared
Gallozzo, Moises-Miguel
1 / 1 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Kumar, Arun
  • Gallozzo, Moises-Miguel
OrganizationsLocationPeople

article

Carbon Wrapped Sulfur Cathode Materials for Rechargeable Batteries

  • Kumar, Arun
  • Tomar, Maharaj
  • Gallozzo, Moises-Miguel
Abstract

<jats:p><jats:bold>Introduction:</jats:bold></jats:p><jats:p> Currently available rechargeable Li-ion batteries based on spinal, layer and olivine crystal structures of Li (Mn, Ni, Co) O<jats:sub>x</jats:sub> and related material systems, shows lower capacity and poor cycling characteristics. In addition, LiCoO<jats:sub>2</jats:sub> is expensive and environmentally unfriendly. Due to high volume and gravimetric energy density, rechargeable lithium batteries have become the dominant power source for portable electronic devices including cell phones and laptops. However, the energy and power densities of rechargeable lithium batteries require significant improvement in order to power electric vehicles<jats:sup>1</jats:sup>. Lower specific capacities of cathode materials (~150mAh/g for layered oxides and ~170mAh/g for LiFePO<jats:sub>4</jats:sub>) compared to those of the anode (370mAh/g for graphite and 4200mAh/g for Si) have been a limiting factor to the energy density of batteries. It is highly desirable to develop and optimize high capacity cathode materials for rechargeable lithium batteries. </jats:p><jats:p>Sulfur is a promising cathode material with a theoretical specific capacity of 1672mAh/g,<jats:sup>2</jats:sup> ~ 5 times higher than those of traditional cathode materials based on transition metal oxides or phosphates. Sulfur also possesses other advantages such as low cost and environmental friendly. </jats:p><jats:p><jats:bold>Experimental: </jats:bold></jats:p><jats:p>Here we present a rational design and synthesis of a novel carbon-sulfur composite material at low temperature. Sulfur particles are synthesized and wrapped by carbon black a simple assembly process. The phase formation behavior of the synthesized powder was investigated using X-ray diffraction, using Cu Kα radiation.  The morphology of the synthesized powder was investigated using a scanning electron microscopy (SEM), and transmission electron microscopy (TEM, Carl Zeiss Leo Omega 922 at 200 KeV). </jats:p><jats:p><jats:bold>Result:</jats:bold></jats:p><jats:p>The XRD patterns (Fig1.)  of all samples could be indexed to the orthorhombic space group based on the phase –pure ordered structure. Electrochemical properties will be study using cyclic Voltammetry, Charge-Discharge Curves, and Electrochemical Impedance  spectroscopy (EIS). These measurements are still in progress. </jats:p><jats:p>Fig1. X ray diffraction patterns of Sulfur-carbon composite (insert morphology image). </jats:p><jats:p><jats:bold>References:</jats:bold><jats:list list-type="simple"><jats:list-item><jats:p>Bruce, P. G.; Scrosati, B.; Tarascon, J. Angew. Chem. Int. Ed. 2008, 47, 2930-2946</jats:p></jats:list-item><jats:list-item><jats:p>Ellis, B. L.; Lee, K. T.; Nazar, L. F. Chem. Mater. 2010, 22, 691-714</jats:p></jats:list-item></jats:list></jats:p><jats:p /><jats:p><jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="331fig1.jpeg" xlink:type="simple" /></jats:inline-formula></jats:p><jats:p>Figure 1</jats:p><jats:p />

Topics
  • density
  • Carbon
  • energy density
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • layered
  • composite
  • transmission electron microscopy
  • Lithium
  • electrochemical-induced impedance spectroscopy
  • cyclic voltammetry
  • space group