People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kumar, Arun
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Lanthanum(III)hydroxide Nanoparticles and Polyethyleneimine-Functionalized Graphene Quantum Dot Nanocomposites in Photosensitive Silicon Heterojunctionscitations
- 2024Fabrication of Highly Efficient and Ambient Stable Planar MAPbI<sub>3</sub> Perovskite Solar Cells via Defect Passivation through Crosslinking Strategycitations
- 2022Interface Analysis of MOCVD Grown GeTe/Sb2Te3 and Ge-Rich Ge-Sb-Te/Sb2Te3 Core-Shell Nanowirescitations
- 2022Highly Sensitive Refractive Index Sensor based on Polymer Bragg Grating: A case study on Extracellular Vesicles Detectioncitations
- 2021Large-Area {MOVPE} Growth of Topological Insulator Bi2Te3 Epitaxial Layers on i-Si(111)citations
- 2021Spin-Charge Conversion in Fe/Au/Sb2Te3 Heterostructures as Probed By Spin Pumping Ferromagnetic Resonancecitations
- 2021Magnetic ground state and crystal structure of the giant dielectric constant material $Ba(Fe_{1/2}Nb_{1/2})O_{3}$citations
- 2020Synthesis of Nanostructured Lipid Carriers Loaded Chitosan/ Carbopol Hybrid Nanocomposite Gel for Oral Delivery of Artemether and Curcumincitations
- 2019Carbon nanotubes synthesis using siliceous breccia as a catalyst sourcecitations
- 2019Evidence for cluster spin glass phase with precursor short-range antiferromagnetic correlations in the B -site disordered $CaFe(_{1/2}Nb_{1/2})O_{3}$ perovskitecitations
- 2019Superior thermomechanical and wetting properties of ultrasonic dual mode mixing assisted epoxy-CNT nanocompositescitations
- 2019Influence of nanosilica on mechanical and durability properties of concretecitations
- 2018Viscoelastic and thermally stable PDMS–SiO<sub>2</sub> filled epoxy adhesive joint on steel substratecitations
- 2018Natural Laterite as a Catalyst Source for the Growth of Carbon Nanotubes and Nanospherescitations
- 2016Anticorrosive and electromagnetic shielding response of a graphene/TiO<sub>2</sub>–epoxy nanocomposite with enhanced mechanical propertiescitations
- 2015Carbon Wrapped Sulfur Cathode Materials for Rechargeable Batteries
- 2009Structural and Electrochemical Characterization of Pure<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mtext>LiFePO</mml:mtext><mml:mtext>4</mml:mtext></mml:msub></mml:math>and Nanocomposite C-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mtext>LiFePO</mml:mtext><mml:mtext>4</mml:mtext></mml:msub></mml:math>Cathodes for Lithium Ion Rechargeable Batteriescitations
- 2009Bragg grating based biochemical sensor using submicron Si/SiO2 waveguides for lab-on-a-chip applications: a novel designcitations
- 2009Highly sensitive biochemical sensor utilizing Bragg grating in submicron Si/SiO2 waveguides
- 2009Refractive index sensing characteristics of dual resonance long period gratings in bare and metal-coated D-shaped fiberscitations
- 2008Side-Polished Optical Fiber Grating-Based Refractive Index Sensors Utilizing the Pure Surface Plasmon Polaritoncitations
Places of action
Organizations | Location | People |
---|
article
Carbon Wrapped Sulfur Cathode Materials for Rechargeable Batteries
Abstract
<jats:p><jats:bold>Introduction:</jats:bold></jats:p><jats:p> Currently available rechargeable Li-ion batteries based on spinal, layer and olivine crystal structures of Li (Mn, Ni, Co) O<jats:sub>x</jats:sub> and related material systems, shows lower capacity and poor cycling characteristics. In addition, LiCoO<jats:sub>2</jats:sub> is expensive and environmentally unfriendly. Due to high volume and gravimetric energy density, rechargeable lithium batteries have become the dominant power source for portable electronic devices including cell phones and laptops. However, the energy and power densities of rechargeable lithium batteries require significant improvement in order to power electric vehicles<jats:sup>1</jats:sup>. Lower specific capacities of cathode materials (~150mAh/g for layered oxides and ~170mAh/g for LiFePO<jats:sub>4</jats:sub>) compared to those of the anode (370mAh/g for graphite and 4200mAh/g for Si) have been a limiting factor to the energy density of batteries. It is highly desirable to develop and optimize high capacity cathode materials for rechargeable lithium batteries. </jats:p><jats:p>Sulfur is a promising cathode material with a theoretical specific capacity of 1672mAh/g,<jats:sup>2</jats:sup> ~ 5 times higher than those of traditional cathode materials based on transition metal oxides or phosphates. Sulfur also possesses other advantages such as low cost and environmental friendly. </jats:p><jats:p><jats:bold>Experimental: </jats:bold></jats:p><jats:p>Here we present a rational design and synthesis of a novel carbon-sulfur composite material at low temperature. Sulfur particles are synthesized and wrapped by carbon black a simple assembly process. The phase formation behavior of the synthesized powder was investigated using X-ray diffraction, using Cu Kα radiation. The morphology of the synthesized powder was investigated using a scanning electron microscopy (SEM), and transmission electron microscopy (TEM, Carl Zeiss Leo Omega 922 at 200 KeV). </jats:p><jats:p><jats:bold>Result:</jats:bold></jats:p><jats:p>The XRD patterns (Fig1.) of all samples could be indexed to the orthorhombic space group based on the phase –pure ordered structure. Electrochemical properties will be study using cyclic Voltammetry, Charge-Discharge Curves, and Electrochemical Impedance spectroscopy (EIS). These measurements are still in progress. </jats:p><jats:p>Fig1. X ray diffraction patterns of Sulfur-carbon composite (insert morphology image). </jats:p><jats:p><jats:bold>References:</jats:bold><jats:list list-type="simple"><jats:list-item><jats:p>Bruce, P. G.; Scrosati, B.; Tarascon, J. Angew. Chem. Int. Ed. 2008, 47, 2930-2946</jats:p></jats:list-item><jats:list-item><jats:p>Ellis, B. L.; Lee, K. T.; Nazar, L. F. Chem. Mater. 2010, 22, 691-714</jats:p></jats:list-item></jats:list></jats:p><jats:p /><jats:p><jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="331fig1.jpeg" xlink:type="simple" /></jats:inline-formula></jats:p><jats:p>Figure 1</jats:p><jats:p />