Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Coelho, Joao

  • Google
  • 3
  • 10
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2017Low-temperature synthesis of high quality Ni-Fe layered double hydroxides hexagonal plateletscitations
  • 2014Supercapacitor Electrodes of MnO<sub>2</sub> and MnO<sub>2</sub>/Graphene Nanosheets Synthesized by Liquid Phase Exfoliationcitations
  • 2014Hybrids of 2D-Nanomaterials for Supercapacitor/Battery Applicationscitations

Places of action

Chart of shared publication
Jaskaniec, Sonia
1 / 4 shared
Hobbs, Christopher
1 / 4 shared
Tyndall, Daire
1 / 2 shared
Seral-Ascaso, Andres
1 / 1 shared
Browne, Michelle P.
1 / 3 shared
Sasaki, Takayoshi
1 / 7 shared
Nicolosi, Valeria
3 / 40 shared
Sanchez, Beatriz Mendoza
2 / 2 shared
Pettersson, Henrik
2 / 3 shared
Obrien, Sean
1 / 3 shared
Chart of publication period
2017
2014

Co-Authors (by relevance)

  • Jaskaniec, Sonia
  • Hobbs, Christopher
  • Tyndall, Daire
  • Seral-Ascaso, Andres
  • Browne, Michelle P.
  • Sasaki, Takayoshi
  • Nicolosi, Valeria
  • Sanchez, Beatriz Mendoza
  • Pettersson, Henrik
  • Obrien, Sean
OrganizationsLocationPeople

document

Supercapacitor Electrodes of MnO<sub>2</sub> and MnO<sub>2</sub>/Graphene Nanosheets Synthesized by Liquid Phase Exfoliation

  • Sanchez, Beatriz Mendoza
  • Pettersson, Henrik
  • Coelho, Joao
  • Nicolosi, Valeria
Abstract

<jats:p>MnO<jats:sub>2</jats:sub> has been extensively investigated due to its high theoretical capacitance of1100 to 1300 F.g<jats:sup>-11</jats:sup>,environmental friendly nature and low cost <jats:sup>2</jats:sup>.The MnO<jats:sub>2 </jats:sub>charge storage mechanism relies on the exchange of protons and/or cations with the electrolyte, redox activity involving a Mn(IV)/Mn(III) transition, and chemisorption of ions onto the MnO<jats:sub>2</jats:sub> surface <jats:sup>1,3,4</jats:sup>. As these are surface processes, it is paramount to design MnO<jats:sub>2</jats:sub> structures with an accessible high surface area. Recently, liquid phase exfoliation has become a powerful technique for the preparation of 2D nanosheets presenting a high surface area<jats:sup>5,6</jats:sup>. Therefore this technique can be used to producenano layers of MnO<jats:sub>2</jats:sub>, which will present an enhancedutilization of the active material and a better electrochemical performance<jats:sup>7</jats:sup>. </jats:p><jats:p>In the present work a high-surface area, porous MnO<jats:sub>2</jats:sub> powder was produced through the oxidation of Mn(NO3)<jats:sub>2</jats:sub> by KMnO<jats:sub>4</jats:sub>. A poly(ethylene glycol)-poly(propylene glycol)-poly(ethylene glycol) triblock copolymer (PEG-PPO-PEG P123) was used as templating agent for the formation of a “flower-like” nanostructure (MOFN) with protruding 2D-nanostructures<jats:sup>8</jats:sup>. Subsequently, MOFN wére exfoliated in isopropanol at 37kHz for 3 hours, resulting in two types of materials: manganese oxide nanolayers (MOL) and a partially exfoliated material (PEMO). Following a novel approach, the MOFN were also exfoliated simultaneously with graphite resulting in a MnO<jats:sub>2</jats:sub>layers/Graphene hybrid (GMOH).</jats:p><jats:p>The obtained dispersions were sprayed onto ITO electrodes and the electrochemical properties studied by cyclic voltammetry. By testing electrodes with different thicknesses it was found out that the electrochemical utilization is enhanced for GMOH (80.0 mF.cm<jats:sup>-2</jats:sup>) at a thickness of 9700 nm). A capacitance as high as 300 F.cm<jats:sup>-3</jats:sup> was also achieved with GMOH thin electrodes followed by 225 F.cm<jats:sup>-3</jats:sup> for MOL and 100 F.cm<jats:sup>-3</jats:sup>for PEMO.</jats:p><jats:p>(1)Wang, G.; Zhang, L.; Zhang, J. <jats:italic>Chemical Society Reviews</jats:italic><jats:bold>2012</jats:bold>, <jats:italic>41</jats:italic>, 797.</jats:p><jats:p>(2)Kang, J.; Hirata, A.; Kang, L.; Zhang, X.; Hou, Y.; Chen, L.; Li, C.; Fujita, T.; Akagi, K.; Chen, M. <jats:italic>Angewandte Chemie International Edition</jats:italic><jats:bold>2013</jats:bold>, <jats:italic>52</jats:italic>, 1664.</jats:p><jats:p>(3)Xu, C.; Kang, F.; Li, B.; Du, H. <jats:italic>Journal of materials research</jats:italic><jats:bold>2010</jats:bold>, <jats:italic>25</jats:italic>, 1421.</jats:p><jats:p>(4)Bélanger, D.; Brousse, L.; Long, J. W. <jats:italic>The Electrochemical Society Interface</jats:italic><jats:bold>2008</jats:bold>, <jats:italic>17</jats:italic>, 49.</jats:p><jats:p>(5)Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.; Shvets, I. V.; Arora, S. K.; Stanton, G.; Kim, H.-Y.; Lee, K.; Kim, G. T.; Duesberg, G. S.; Hallam, T.; Boland, J. J.; Wang, J. J.; Donegan, J. F.; Grunlan, J. C.; Moriarty, G.; Shmeliov, A.; Nicholls, R. J.; Perkins, J. M.; Grieveson, E. M.; Theuwissen, K.; McComb, D. W.; Nellist, P. D.; Nicolosi, V. <jats:italic>Science</jats:italic><jats:bold>2011</jats:bold>, <jats:italic>331</jats:italic>, 568.</jats:p><jats:p>(6)Nicolosi, V.; Chhowalla, M.; Kanatzidis, M. G.; Strano, M. S.; Coleman, J. N. <jats:italic>Science</jats:italic><jats:bold>2013</jats:bold>, <jats:italic>340</jats:italic>.</jats:p><jats:p>(7)Toupin, M.; Brousse, T.; Bélanger, D. <jats:italic>Chemistry of Materials</jats:italic><jats:bold>2004</jats:bold>, <jats:italic>16</jats:italic>, 3184.</jats:p><jats:p>(8)Jiang, H.; Sun, T.; Li, C.; Ma, J. <jats:italic>Journal of Materials Chemistry</jats:italic><jats:bold>2012</jats:bold>, <jats:italic>22</jats:italic>, 2751.</jats:p>

Topics
  • porous
  • impedance spectroscopy
  • dispersion
  • surface
  • copolymer
  • Manganese
  • cyclic voltammetry
  • liquid phase