Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Brajpuriya, Ranjeet

  • Google
  • 1
  • 4
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Review—Fabrication of Nanostructured Corrosion-Resistant Superhydrophobic Coatings on Copper by Electrodeposition9citations

Places of action

Chart of shared publication
Pandey, Jitendra Kumar
1 / 2 shared
Gupta, Rajeev
1 / 9 shared
Samanta, Krishna
1 / 1 shared
Mamgain, Himanshu Prasad
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Pandey, Jitendra Kumar
  • Gupta, Rajeev
  • Samanta, Krishna
  • Mamgain, Himanshu Prasad
OrganizationsLocationPeople

article

Review—Fabrication of Nanostructured Corrosion-Resistant Superhydrophobic Coatings on Copper by Electrodeposition

  • Pandey, Jitendra Kumar
  • Gupta, Rajeev
  • Brajpuriya, Ranjeet
  • Samanta, Krishna
  • Mamgain, Himanshu Prasad
Abstract

<jats:title>Abstract</jats:title><jats:p>Corrosion is an undesirable electrochemical reaction that leads to material degradation and affects material properties like ductility, malleability, conductivity, etc. The consequences of corrosion are machine failure, bridge failures, buildings collapse, and significant economic losses to GDP. Furthermore, corrosion can pose serious safety risks that result in casualtieswhich makes minimizing the effect of corrosion a great challenge. Traditional solutions like inhibitors, design modification, and paints are available to prevent corrosion but have many limitations, such as cost, durability, stability issues, and general inefficiency. In this context, a nanostructured superhydrophobic coating (SH) is gaining attention due to its corrosion prevention efficiency and other broad industrial applications. The nano air pockets exhibit a high contact angle due to their unique combination of elevated surface roughness, distinctive nanostructure, and reduced surface energy. This reduces the surface area of contact between the corrosive substance and water droplet and the metal surface, leading to improved efficiency in resisting corrosion.In this paper, the recent electrodeposition to develop corrosion-resistant SH coatings on copper substrates and compression with other metals with their physical, chemical, and thermal stabilities are discussed.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • corrosion
  • copper
  • durability
  • ductility
  • electrodeposition
  • surface energy