Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Aishwarya, K.

  • Google
  • 2
  • 8
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Enhanced Seebeck Coefficient of Cu-Bi-S Heterogeneous Composite Synthesized via Solvothermal Method1citations
  • 2022Review—State of the Art of the Multifunctional Bismuth Ferrite: Synthesis Method and Applications8citations

Places of action

Chart of shared publication
Thenmozhi, R.
1 / 2 shared
Maruthasalamoorthy, S.
2 / 2 shared
Navamathavan, Rangaswamy
2 / 2 shared
Nirmala, R.
2 / 7 shared
Anbalagan, G.
1 / 2 shared
Mani, J.
1 / 1 shared
Jeniffer, I. Hannah
1 / 1 shared
Punithavelan, N.
1 / 1 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Thenmozhi, R.
  • Maruthasalamoorthy, S.
  • Navamathavan, Rangaswamy
  • Nirmala, R.
  • Anbalagan, G.
  • Mani, J.
  • Jeniffer, I. Hannah
  • Punithavelan, N.
OrganizationsLocationPeople

article

Enhanced Seebeck Coefficient of Cu-Bi-S Heterogeneous Composite Synthesized via Solvothermal Method

  • Thenmozhi, R.
  • Aishwarya, K.
  • Maruthasalamoorthy, S.
  • Navamathavan, Rangaswamy
  • Nirmala, R.
  • Anbalagan, G.
  • Mani, J.
Abstract

<jats:p>We report on a heterogeneous composite Cu-Bi-S system for thermoelectric applications. This composite was synthesized by an efficient solvothermal method. The dominant phase of Cu<jats:sub>3</jats:sub>BiS<jats:sub>3</jats:sub> showed a weak polymorphic nature at room temperature. The low polymorphic to first-order phase transition was obtained at 391.5 K where the carriers dominated the transport properties. The structure changed from P2<jats:sub>1</jats:sub>2<jats:sub>1</jats:sub>2<jats:sub>1</jats:sub> to modulated intermediate polymorphic continues up to 463 K followed by changes to high polymorph. The ionic conduction switched in the intermediate modulate structure above 408 K. The phase boundary scattering mechanism was attributed to the enhancement of the Seebeck coefficient. The maximum power factor of 2.76 <jats:italic>μ</jats:italic>Wm<jats:sup>−1</jats:sup>K<jats:sup>−2</jats:sup> at 443 K persisted in this heterogeneous composite where Cu<jats:sub>3</jats:sub>BiS<jats:sub>3</jats:sub> phase existed as an intermediate polymorph.</jats:p>

Topics
  • phase
  • composite
  • phase transition
  • phase boundary