People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Corley-Wiciak, Cedric
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Full Picture of Lattice Deformation in a Ge<sub>1 − x</sub>Sn<sub>x</sub> Micro‐Disk by 5D X‐ray Diffraction Microscopycitations
- 2024High-quality CMOS compatible n-type SiGe parabolic quantum wells for intersubband photonics at 2.5–5 THzcitations
- 2024The Interplay between Strain, Sn Content, and Temperature on Spatially Dependent Bandgap in Ge1−xSnx Microdiskscitations
- 2024Full Picture of Lattice Deformation in a Ge 1-x Sn x Micro‐Disk by 5D X‐ray Diffraction Microscopycitations
- 2024High-quality CMOS compatible n-type SiGe parabolic quantum wells for intersubband photonics at 2.5–5 THzcitations
- 2024The Lattice Strain Distribution in GexSn1-x Micro-Disks Investigated at the Sub 100-nm Scale
- 2023High Crystallinity Ge Growth on Si (111) and Si (110) by Using Reduced Pressure Chemical Vapor Depositioncitations
- 2023The Interplay between Strain, Sn Content, and Temperature on Spatially Dependent Bandgap in Ge<sub>1−<i>x</i></sub>Sn<sub><i>x</i></sub> Microdiskscitations
- 2023Lateral Selective SiGe Growth for Local Dislocation-Free SiGe-on-Insulator Virtual Substrate Fabrication
- 2022Lateral Selective SiGe Growth for Dislocation-Free Virtual Substrate Fabricationcitations
Places of action
Organizations | Location | People |
---|
article
High Crystallinity Ge Growth on Si (111) and Si (110) by Using Reduced Pressure Chemical Vapor Deposition
Abstract
<jats:p>A method for high quality epitaxial growth of Ge on Si (111) and Si (110) is investigated by reduced pressure chemical vapor deposition. Two step Ge epitaxy (low temperature Ge seed and high temperature main Ge growth) with several cycles of annealing by interrupting the Ge growth (cyclic annealing) is performed. In the case of Ge seed layer growth below 350 °C for (111) and 400 °C for (110) orientation, huge surface roughening due to too high dislocation density is observed after the following annealing step. For both crystal orientations, a high crystallinity Ge seed layer is realized by combination of 450 °C growth with 800 °C annealing. Once the high-quality Ge seed layer is deposited, high crystal quality Ge can be grown at 600 °C on the seed layer for both crystal orientations. For the 5 <jats:italic>μ</jats:italic>m thick Ge layer deposited with the cyclic annealing process at 800 °C, a Si diffusion length of ∼400 nm from the interface, RMS roughness below 0.5 nm and threading dislocation density of 5 × 10<jats:sup>6 </jats:sup>cm<jats:sup>−2</jats:sup> are achieved for both (111) and (110) substrates.</jats:p>