People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Spirito, Davide
Basque Center for Materials, Applications and Nanostructures
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Full Picture of Lattice Deformation in a Ge<sub>1 − x</sub>Sn<sub>x</sub> Micro‐Disk by 5D X‐ray Diffraction Microscopycitations
- 2024Selective Growth of GaP Crystals on CMOS-Compatible Si Nanotip Wafers by Gas Source Molecular Beam Epitaxycitations
- 2024The Interplay between Strain, Sn Content, and Temperature on Spatially Dependent Bandgap in Ge1−xSnx Microdiskscitations
- 2024Full Picture of Lattice Deformation in a Ge 1-x Sn x Micro‐Disk by 5D X‐ray Diffraction Microscopycitations
- 2024Continuous-wave electrically pumped multi-quantum-well laser based on group-IV semiconductorscitations
- 2024Continuous-wave electrically pumped multi-quantum-well laser based on group-IV semiconductorscitations
- 2024The Lattice Strain Distribution in GexSn1-x Micro-Disks Investigated at the Sub 100-nm Scale
- 2023Terahertz subwavelength sensing with bio-functionalized germanium fano-resonators
- 2023The Interplay between Strain, Sn Content, and Temperature on Spatially Dependent Bandgap in Ge<sub>1−<i>x</i></sub>Sn<sub><i>x</i></sub> Microdiskscitations
- 2023Lateral Selective SiGe Growth for Local Dislocation-Free SiGe-on-Insulator Virtual Substrate Fabrication
- 2022Terahertz subwavelength sensing with bio-functionalized germanium fano-resonatorscitations
- 2022Magnetic properties of layered hybrid organic-Inorganic metal-halide perovskites: Transition metal, organic cation and perovskite phase pffectscitations
- 2022Lateral Selective SiGe Growth for Dislocation-Free Virtual Substrate Fabricationcitations
- 2022Raman spectroscopy in layered hybrid organic-inorganic metal halide perovskites
- 2022Magnetic Properties of Layered Hybrid Organic‐Inorganic Metal‐Halide Perovskites: Transition Metal, Organic Cation and Perovskite Phase Effectscitations
- 2022Monolithic and catalyst-free selective epitaxy of InP nanowires on Silicon
- 2022Tailoring photoluminescence by strain-engineering in layered perovskite flakescitations
- 2020CsPbX3/SiOx (X = Cl, Br, I) monoliths prepared via a novel sol-gel route starting from Cs4PbX6 nanocrystalscitations
- 2020Nanocrystals of Lead Chalcohalides:A Series of Kinetically Trapped Metastable Nanostructurescitations
- 2020Nano- and microscale apertures in metal films fabricated by colloidal lithography with perovskite nanocrystalscitations
- 2020Nanocrystals of Lead Chalcohalidescitations
- 2019Extending the Colloidal Transition Metal Dichalcogenide Library to ReS2 Nanosheets for Application in Gas Sensing and Electrocatalysiscitations
- 2019Keratin-Graphene Nanocomposite: Transformation of Waste Wool in Electronic Devicescitations
Places of action
Organizations | Location | People |
---|
article
Lateral Selective SiGe Growth for Local Dislocation-Free SiGe-on-Insulator Virtual Substrate Fabrication
Abstract
Dislocation free local SiGe-on-insulator (SGOI) virtual substrate is fabricated using lateral selective SiGe growth by reduced pressure chemical vapor deposition. The lateral selective SiGe growth is performed around a ∼1.25 μm square Si (001) pillar in a cavity formed by HCl vapor phase etching of Si at 850 °C from side of SiO2/Si mesa structure on buried oxide. Smooth root mean square roughness of SiGe surface of 0.14 nm, which is determined by interface roughness between the sacrificially etched Si and the SiO2 cap, is obtained. Uniform Ge content of ∼40% in the laterally grown SiGe is observed. In the Si pillar, tensile strain of ∼0.65% is found which could be due to thermal expansion difference between SiO2 and Si. In the SiGe, tensile strain of ∼1.4% along 〈010〉 direction, which is higher compared to that along 〈110〉 direction, is observed. The tensile strain is induced from both [110] and [−110] directions. Threading dislocations in the SiGe are located only ∼400 nm from Si pillar and stacking faults are running towards 〈110〉 directions, resulting in the formation of a wide dislocation-free area in SiGe along 〈010〉 due to horizontal aspect ratio trapping. ; publishedVersion