Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sogai, K.

  • Google
  • 1
  • 5
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Nanothick TiO2 Channel Thin Film Transistors for UV and Gas Sensing4citations

Places of action

Chart of shared publication
Kanomata, K.
1 / 1 shared
Miura, M.
1 / 4 shared
Kubota, S.
1 / 1 shared
Saito, K.
1 / 5 shared
Yoshida, K.
1 / 2 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Kanomata, K.
  • Miura, M.
  • Kubota, S.
  • Saito, K.
  • Yoshida, K.
OrganizationsLocationPeople

article

Nanothick TiO2 Channel Thin Film Transistors for UV and Gas Sensing

  • Kanomata, K.
  • Miura, M.
  • Kubota, S.
  • Sogai, K.
  • Saito, K.
  • Yoshida, K.
Abstract

<jats:p>Nanothick TiO<jats:sub>2</jats:sub> channel-thin film transistors (TFTs) are examined as UV and gas sensors. The TiO<jats:sub>2</jats:sub> thin films were deposited by atomic layer deposition on thermally oxidized n<jats:sup>+</jats:sup> Si substrates with deposition thicknesses from 17 to 42 nm, where the channel length and width were fixed at 60 <jats:italic>μ</jats:italic>m and 1 mm, respectively. The titanium drain and source electrodes were fabricated on the TiO<jats:sub>2</jats:sub> channel and the n<jats:sup>+</jats:sup> Si substrate was used as the gate electrode. The nanothick TiO<jats:sub>2</jats:sub>-channel TFT exhibits an extremely high drain current modulation of ∼20 <jats:italic>μ</jats:italic>A in the atmosphere with a UV exposure of 1.6 × 10<jats:sup>−5</jats:sup> W cm<jats:sup>−2</jats:sup> and a wavelength of 278 nm. This corresponds to a UV sensitivity of 2 × 10<jats:sup>3</jats:sup> A W<jats:sup>−1</jats:sup>. The strong drain current modulation by the UV light is explained not only with the direct absorption of the UV photons in the channel but also with the surface interactions with gas molecules in the atmosphere. In the course of the mechanism study about the UV sensing, we confirm the strong modulation of the drain current with various ambience of air, dry air, N<jats:sub>2,</jats:sub> and vacuum, suggesting a possibility as the gas sensor in the dark. The operation mechanism of the nanothick TiO<jats:sub>2</jats:sub> TFT is discussed in this paper.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • thin film
  • titanium
  • atomic layer deposition