People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Atar, Necip
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
- 2020A Novel Molecularly Imprinting Biosensor Including Graphene Quantum Dots/Multi-Walled Carbon Nanotubes Composite for Interleukin-6 Detection and Electrochemical Biosensor Validationcitations
- 2016Synergistic corrosion inhibition effect of 1-ethyl-1-methylpyrrolidinium tetrafluoroborate and iodide ions for low carbon steel in HCl solutioncitations
Places of action
Organizations | Location | People |
---|
article
A Novel Molecularly Imprinting Biosensor Including Graphene Quantum Dots/Multi-Walled Carbon Nanotubes Composite for Interleukin-6 Detection and Electrochemical Biosensor Validation
Abstract
<jats:p>Interleukin-6 (IL-6) as a pro-inflammatory cytokine demonstrate a critical role in the inflammatory response. Especially, the high levels of IL-6 measured in plasma have been associated with pathological inflammation. In this report, new molecularly imprinting biosensor on graphene quantum dots (GQDs)/functionalized multi-walled carbon nanotubes (f-MWCNTs) composite were prepared for IL-6 protein detection. The structures of GQDs, f-MWCNTs and GQDs/f-MWCNTs composite were highlighted by scanning electron microscope (SEM), transmission electron microscopy (TEM), raman spectroscopy, UV–vis spectroscopy, fourier transform infrared spectroscopy (FTIR), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and X-ray diffraction (XRD) method. Surface morphology characterization shows the nanoporous cavities as an effective biosensing area. IL-6 protein imprinted electrode was prepared on GQDs/f-MWCNTs composite in the presence of 100.0 mM pyrrole containing 25.0 mM IL-6 protein. 0.01–2.0 pg ml<jats:sup>−1</jats:sup> and 0.0030 pg ml<jats:sup>−1</jats:sup> were found as linearity range and the detection limit (LOD) for analytical application in plasma samples. Finally, the validated biosensor was examined in terms of stability, repeatability and reproducibility.</jats:p>