People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Graham, Samuel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2024MAX Phase Ti<sub>2</sub>AlN for HfO<sub>2</sub> Memristors with Ultra‐Low Reset Current Density and Large On/Off Ratiocitations
- 2021Geomechanical characterisation of organic-rich calcareous shale using AFM and nanoindentationcitations
- 2020Diamond Seed Size and the Impact on Chemical Vapor Deposition Diamond Thin Film Propertiescitations
- 2019The Effects of AlN and Copper Back Side Deposition on the Performance of Etched Back GaN/Si HEMTscitations
- 2018Transient Liquid Phase Bonding of AlN to AlSiC for Durable Power Electronic Packagescitations
- 2016Spectroscopy and control of near-surface defects in conductive thin film ZnOcitations
Places of action
Organizations | Location | People |
---|
article
Diamond Seed Size and the Impact on Chemical Vapor Deposition Diamond Thin Film Properties
Abstract
Diamond seeds were assessed for their role in the heterogeneous nucleation for diamond films deposited on silicon using chemical vapor deposition. Two diamond seed sizes – 4 nm and 20 nm – were studied. The study revealed that the larger seed size, even when with a smaller seed density, produces a larger grain size near the interface region, and led to a higher in-plane thermal conductivity as measured by Raman thermography. By fine control of the seed size and density, thermal conductivity near the nucleation region can therefore be improved. This demonstrates that the seeding condition is critical to diamond film growth for thermal applications in electronic devices.