People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Alimadadi, Hossein
Grundfos (Denmark)
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2020Dynamic martensitic phase transformation in single-crystal silver microcubescitations
- 2020Mechanical properties and load bearing capability of nanocrystalline nickel-tungsten multilayered coatingscitations
- 2020Fabrication of hollow coaxial Al 2 O 3 /ZnAl 2 O 4 high aspect ratio freestanding nanotubes based on the Kirkendall effectcitations
- 2020Fabrication of hollow coaxial Al2O3/ZnAl2O4 high aspect ratio freestanding nanotubes based on the Kirkendall effectcitations
- 2019On the microstructural-textural characterization and deformation analysis of a nano/ultrafine grained Fe-20Cr-8Mn-0.3N duplex alloy with superior mechanical propertiescitations
- 2018Residual stress in expanded austenite on stainless steel; origin, measurement, and predictioncitations
- 2018Residual stress in expanded austenite on stainless steel; origin, measurement, and predictioncitations
- 2018Optimal microstructural design for high thermal stability of pure FCC metals based on studying effect of twin boundaries character and network of grain boundariescitations
- 2018Optimal microstructural design for high thermal stability of pure FCC metals based on studying effect of twin boundaries character and network of grain boundariescitations
- 2017Mechanical properties of multilayer Ni-Fe and Ni-Fe-Al2O3 nanocomposite coatingcitations
- 2017Comprehensive Deformation Analysis of a Newly Designed Ni-Free Duplex Stainless Steel with Enhanced Plasticity by Optimizing Austenite Stabilitycitations
- 2017Modeling of Ni Diffusion Induced Austenite Formation in Ferritic Stainless Steel Interconnectscitations
- 2017Modeling of Ni Diffusion Induced Austenite Formation in Ferritic Stainless Steel Interconnectscitations
- 2017Electrodeposition mechanism and corrosion behavior of multilayer nanocrystalline nickel-tungsten alloycitations
- 2017Multiscale characterization of White Etching Cracks (WEC) in a 100Cr6 bearing from a thrust bearing test rigcitations
- 2017Mechanical properties of multilayer Ni-Fe and Ni-Fe-Al 2 O 3 nanocomposite coatingcitations
- 2015Electrical Resistance Measurements and Microstructural Characterization of the Anode/Interconnect Contact in Simulated Anode-Side SOFC Conditionscitations
- 2014Grain boundary engineering to enhance thermal stability of electrodeposited nickel
- 2013Grain Boundary Engineering of Electrodeposited Thin Films
- 2012Dislocation density and Burgers vector population in fiber-textured Ni thin films determined by high-resolution X-ray line profile analysiscitations
- 2011Effect of plasma nitriding on electrodeposited Ni–Al composite coatingcitations
- 2009Challenges of sample preparation for cross sectional EBSD analysis of electrodeposited nickel films
Places of action
Organizations | Location | People |
---|
article
Modeling of Ni Diffusion Induced Austenite Formation in Ferritic Stainless Steel Interconnects
Abstract
Ferritic stainless steel interconnect plates are widely used in planarsolid oxide fuel cell and electrolysis cell stacks.During stack production and operation, nickel fromthe Ni/yttria stabilized zirconia fuel electrode or from the Ni contactcomponent layer diffuses into the interconnectplate, causing transformation of the ferritic phase into an austeniticphasein the interface region. This is accompanied withchanges in volume, and in mechanical and corrosion properties of theinterconnectplates. In this work, kinetic modeling of theinter-diffusion between Ni and FeCr based ferritic stainless steel wasconducted,using the CALPHAD (CALculation of PHAse Diagrams)approach with the DICTRA (DIffusion Controlled TRAnsformation) software.The kinetics of inter-diffusion and austeniteformation was explored in detail. The simulation was further validatedby comparingwith experiments. The results show that after 2000 hat 800°C Ni diffuses more than 100 μm deep into Crofer 22 APU. Alongwith the Ni diffusion, part of the ferritic steelwith 50–60 μm in thickness has transformed into the austenitic phase.Growthof the austenite phase in commercial interconnectmaterials was predicted to take place under practical stack operationconditions.