People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nielsen, Jimmy
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2016Performance Factors and Sulfur Tolerance of Metal Supported Solid Oxide Fuel Cells with Nanostructured Ni:GDC Infiltrated Anodescitations
- 2015Performance Factors and Sulfur Tolerance of Metal Supported Solid Oxide Fuel Cells with Nanostructured Ni:GDC Infiltrated Anodescitations
- 2015Investigation of Novel Electrocatalysts for Metal Supported Solid Oxide Fuel Cells - Ru:GDCcitations
- 2014Impedance of SOFC electrodes: A review and a comprehensive case study on the impedance of LSM:YSZ cathodescitations
- 2013Infiltrated SrTiO3:FeCr‐based Anodes for Metal‐Supported SOFCcitations
- 2012Characterization of a well performing and durable Ni:CGO-infiltrated anode for metal-supported SOFC
- 2012Detailed impedance characterization of a well performing and durable Ni:CGO infiltrated cermet anode for metal-supported solid oxide fuel cellscitations
- 2012Infiltrated SrTiO3:FeCr-based anodes for metalsupported SOFC
- 2012Durable and Robust Solid Oxide Fuel Cells
- 2012Break-down of Losses in High Performing Metal-Supported Solid Oxide Fuel Cells
- 2012Characterization of impregnated GDC nano structures and their functionality in LSM based cathodescitations
- 2011SOFC LSM:YSZ cathode degradation induced by moisture: An impedance spectroscopy studycitations
- 2011High performance metal-supported solid oxide fuel cells with Gd-doped ceria barrier layerscitations
- 2011Impedance of porous IT-SOFC LSCF:CGO composite cathodescitations
Places of action
Organizations | Location | People |
---|
article
Performance Factors and Sulfur Tolerance of Metal Supported Solid Oxide Fuel Cells with Nanostructured Ni:GDC Infiltrated Anodes
Abstract
Two metal supported solid oxide fuel cells (active area 16 cm2) with nanostructured Ni:GDC infiltrated anodes, possessing different anode and support microstructures were studied in respect to sulfur tolerance at an operating temperature of 650°C. The studied MS-SOFCs are based on ferretic stainless steel (FeCr) and showed excellent performance characteristics at 650°C with fuel utilization corrected area specific resistances of 0.35 Ωcm2 and 0.7 Ωcm2 respectively. The sulfur tolerance testing was performed by periodic addition of 2, 5, and 10 ppm H2S in hydrogen based fuel under galvanostatic operation at a current load of 0.25 Acm−2. The results were compared with literature on the sulfur tolerance of conventional SOFC Ni/YSZ cermet anode. The comparison in terms of absolute cell resistance increase and relative anode polarization resistance increase indicates, that the nanostructured Ni:GDC MS-SOFC based anode is significantly more sulfur tolerant than the conventional Ni/YSZ cermet anode. Furthermore, it was shown that the believed extension of the electrochemical three-phase-boundary reaction zone in the presence of GDC must be very limited and cannot account for the higher sulfur tolerance of GDC modified SOFC anodes.