People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Abdulaziz, Abdulkarim Abahussain
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Mass-transfer measurements at porous 3D Pt-Ir/Ti electrodes in a direct borohydride fuel cell
Abstract
The volumetric mass-transport coefficients (kmAe) for borohydride ion oxidation at various titanium 3D electrode structures in a rectangular flow channel were calculated by chronoamperometry in a three-electrode electrochemical flow cell. The 3D electrodes used for the oxidation of borohydride in alkaline media included flat, mesh, micromesh, fine mesh and felt coated with a Pt-Ir alloy catalysts. Felt, fine mesh and micromesh electrodes showed high electrochemical activity with current enhancement factors () of 100, 64, 22, respectively at a mean linear flow velocity of 6 cm s-1 through the electrodes. In the presence of a turbulence promoter (TP), the currents from the flat and mesh electrodes improved twice compared with no TP. The 3D electrodes were tested in a complete cell with an anolyte consisting of 2.5 mol dm-3 NaBH4 in 2 mol dm-3 and a catholyte of 0.75 mol dm-3 H2O2 in 2 mol dm-3 NaOH. The power density increased in the following order: plate < micromesh < mesh < felt < mesh + 1 TP < fine mesh. The maximum power density at the fine mesh was 44.5 mW cm-2 at a cell potential of 0.44 V and a current density of 100 mA cm-2 at 296 K.