People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kadkhodazadeh, Shima
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2022Photo-stimulated hydrogen desorption from magnesium nanoparticlescitations
- 2022Photo-stimulated hydrogen desorption from magnesium nanoparticlescitations
- 2022High resolution crystal orientation mapping of ultrathin films in SEM and TEMcitations
- 2022High resolution crystal orientation mapping of ultrathin films in SEM and TEMcitations
- 2021Initiation and Progression of Anisotropic Galvanic Replacement Reactions in a Single Ag Nanowire:Implications for Nanostructure Synthesiscitations
- 2021Initiation and Progression of Anisotropic Galvanic Replacement Reactions in a Single Ag Nanowirecitations
- 2020Aminopropylsilatrane Linkers for Easy and Fast Fabrication of High-Quality 10 nm Thick Gold Films on SiO2 Substratescitations
- 2020Optical and electronic properties of low-density InAs/InP quantum-dot-like structures designed for single-photon emitters at telecom wavelengthscitations
- 2020Aminopropylsilatrane Linkers for Easy and Fast Fabrication of High-Quality 10 nm Thick Gold Films on SiO 2 Substratescitations
- 2019Rationally Designed PdAuCu Ternary Alloy Nanoparticles for Intrinsically Deactivation-Resistant Ultrafast Plasmonic Hydrogen Sensingcitations
- 2019Metal-polymer hybrid nanomaterials for plasmonic ultrafast hydrogen detectioncitations
- 2019Metal-polymer hybrid nanomaterials for plasmonic ultrafast hydrogen detectioncitations
- 2019Optical property – composition correlation in noble metal alloy nanoparticles studied with EELScitations
- 2018Probing the chemistry of adhesion between a 316L substrate and spin-on-glass coatingcitations
- 2017The substrate effect in electron energy-loss spectroscopy of localized surface plasmons in gold and silver nanoparticlescitations
- 2017The substrate effect in electron energy-loss spectroscopy of localized surface plasmons in gold and silver nanoparticlescitations
- 2017Interfacial Interaction of Oxidatively Cured Hydrogen Silsesquioxane Spin-On-Glass Enamel with Stainless Steel Substratecitations
- 2017Broadband infrared absorption enhancement by electroless-deposited silver nanoparticlescitations
- 2014New amorphous interface for precipitate nitrides in steelcitations
- 2013Electron Energy Loss and One- and Two-Photon Excited SERS Probing of “Hot” Plasmonic Silver Nanoaggregatescitations
- 2011Towards quantitative three-dimensional characterisation of InAs quantum dots
- 2010Mapping boron in silicon solar cells using electron energy-loss spectroscopy
- 2010Mapping boron in silicon solar cells using electron energy-loss spectroscopy
Places of action
Organizations | Location | People |
---|
article
Interfacial Interaction of Oxidatively Cured Hydrogen Silsesquioxane Spin-On-Glass Enamel with Stainless Steel Substrate
Abstract
Thin film silica coatings have proven to be efficient barrier coatings to protect stainless steels from corrosion in aggressive environments. The deposition of sub-μm silica films from liquid hydrogen silsesquioxane precursor has previously been demonstrated on metallic substrates, whereby the films were thermally cured in inert atmosphere, which required complicated processing equipment, such as gas or vacuum furnaces. In contrast, curing in air is a promising routine to simplify the curing process, reduce curing cost and increase the curing efficiency. In the present work, silica-like thin films were deposited on 316L grade austenitic stainless steel and oxidatively cured at 450◦C in ambient air. Oxidative curing yielded well adherent films which solely showed microscopic delamination after standardized adherence testing. Further, the oxidative curing led to the formation of a pronounced interfacial duplex-oxide with an outer zone composed of Fe<sub>2</sub>O<sub>3</sub> in a SiO<sub>2-x</sub> matrix and an inner zone composed of complex (Cr<sup>3+</sup>,Fe<sup>2+</sup>,Mn<sup>2+</sup>)-oxides. Moreover, a Cr depletion of the substrate in the immediate vicinity of the surface was observed. It was concluded that the interfacial formation is controlled by the kinetic limitation of Cr transport to the interface, which consequently led to the Cr-depletion of the sub-surface region