People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sorsa, Olli
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2022Hydrogen evolution in alkaline medium on intratube and surface decorated PtRu catalystcitations
- 2019Stable reference electrode in polymer electrolyte membrane electrolyser for three-electrode measurementscitations
- 2019Flexible and Mechanically Durable Asymmetric Supercapacitor Based on NiCo-Layered Double Hydroxide and Nitrogen-Doped Graphene Using a Simple Fabrication Methodcitations
- 2019Flexible and Mechanically Durable Asymmetric Supercapacitor Based on NiCo-Layered Double Hydroxide and Nitrogen-Doped Graphene Using a Simple Fabrication Methodcitations
- 2017Co-electrodeposited mesoporous PtM (M=Co, Ni, Cu) as an active catalyst for oxygen reduction reaction in a polymer electrolyte membrane fuel cellcitations
- 2015Trimetallic catalyst based on PtRu modified by irreversible adsorption of Sb for direct ethanol fuel cellscitations
Places of action
Organizations | Location | People |
---|
article
Stable reference electrode in polymer electrolyte membrane electrolyser for three-electrode measurements
Abstract
In this study, various methods to study individual electrodes in polymer electrolyte membrane cells are reviewed and a novel reference electrode design is developed for a laboratory scale single cell polymer electrolyte membrane water electrolyser. The design uses an internal pseudo-reference electrode which is proven to enable galvanostatic electrochemical impedance spectroscopy studies. The setup is used to study the state-of-the-art electrode materials with high loadings in a start-stop cycling durability test. The cycled catalyst layers are characterized ex-situ with SEM, TEM and XRD. As a result, on the anode the mass transport resistance increases, the macro porosity increases and a structural change from amorphous IrOx towards crystalline IrO2 is detected. On the cathode the platinum particle size increases and an intensifying corrosion phenomenon is detected. In overall, this degradation has still low effect on the full cell performance during the studied 1750 hours. However, there is a clear indication that if the start-stop cycling is further continued, the cell will experience a dramatic performance loss much sooner than when operating it in a constant current mode. ; Peer reviewed