People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sun, Kai
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2022VO 2 metasurface smart thermal emitter with high visual transparency for passive radiative cooling regulation in space and terrestrial applicationscitations
- 2022Room temperature phase transition of W-doped VO 2 by atomic layer deposition on 200 mm Si wafers and flexible substratescitations
- 2022Room temperature phase transition of W-doped VO2 by atomic layer deposition on 200 mm Si wafers and flexible substratescitations
- 2022VO2metasurface smart thermal emitter with high visual transparency for passive radiative cooling regulation in space and terrestrial applicationscitations
- 2020Multi-stack insulator to minimise threshold voltage drift in ZnO FET sensors operating in ionic solutionscitations
- 2012Remote plasma enhanced atomic layer deposition of ZnO for thin film electronic applicationscitations
- 2012Effect of an oxide cap layer and fluorine implantation on the metal-induced lateral crystallization of amorphous siliconcitations
Places of action
Organizations | Location | People |
---|
article
Effect of an oxide cap layer and fluorine implantation on the metal-induced lateral crystallization of amorphous silicon
Abstract
In this work, we investigate the effect of oxide cap layer on the metal-induced lateral crystallization (MILC) of amorphous silicon. The MILC is characterized at temperatures in the range 550 to 428°C using Nomarski optical microscopy and Raman spectroscopy. It is shown that better lateral crystallization is obtained when the oxide cap layer is omitted, with the crystallization length increasing by 33% for a 15 hour anneal at 550°C. A smaller increase of about 10% is seen at lower temperatures between 525°C and 475°C and no increase is seen below 450°C. It is also shown that the detrimental effect of the oxide cap layer can be dramatically reduced by giving samples a fluorine implant prior to the MILC anneal. Raman spectroscopy shows that random grain growth is significantly less for unimplanted samples without an oxide cap and also for fluorine implanted samples both with and without an oxide cap. The crystallization length improvement for samples without an oxide cap layer is explained by the elimination of random grain crystallization at the interface between the amorphous silicon and the oxide cap layer.