Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sun, Kai

  • Google
  • 7
  • 29
  • 293

University of Southampton

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2022VO 2 metasurface smart thermal emitter with high visual transparency for passive radiative cooling regulation in space and terrestrial applications90citations
  • 2022Room temperature phase transition of W-doped VO 2 by atomic layer deposition on 200 mm Si wafers and flexible substrates40citations
  • 2022Room temperature phase transition of W-doped VO2 by atomic layer deposition on 200 mm Si wafers and flexible substrates40citations
  • 2022VO2metasurface smart thermal emitter with high visual transparency for passive radiative cooling regulation in space and terrestrial applications90citations
  • 2020Multi-stack insulator to minimise threshold voltage drift in ZnO FET sensors operating in ionic solutions2citations
  • 2012Remote plasma enhanced atomic layer deposition of ZnO for thin film electronic applications29citations
  • 2012Effect of an oxide cap layer and fluorine implantation on the metal-induced lateral crystallization of amorphous silicon2citations

Places of action

Chart of shared publication
Muskens, Otto L.
2 / 2 shared
Simeoni, Mirko
2 / 2 shared
Urbani, Alessandro
4 / 4 shared
Mengali, Sandro
2 / 2 shared
Xiao, Wei
2 / 3 shared
Kees De Groot, C. H.
1 / 1 shared
Wheeler, Callum
4 / 5 shared
Gaspari, Matteo
2 / 2 shared
Hillier, James A.
2 / 2 shared
Kalfagiannis, Nikolaos
2 / 10 shared
De Groot, Cornelis H.
1 / 1 shared
Ye, Sheng
2 / 4 shared
Zeimpekis, Ioannis
2 / 24 shared
De Groot, Cornelis
1 / 41 shared
Muskens, Otto
2 / 6 shared
Groot, C. H. Kees De
1 / 2 shared
Ebert, Martin
1 / 7 shared
Reynolds, Jamie
1 / 1 shared
De Planque, Maurits
1 / 1 shared
Joshua, Daniel Akrofi
1 / 1 shared
Chong, Harold
2 / 10 shared
Hu, Ruoyu
1 / 1 shared
Gunn, R.
2 / 2 shared
Hakim, M. M. A.
2 / 2 shared
Sultan, S. M.
1 / 1 shared
Masaud, T. B.
1 / 1 shared
Clark, O. D.
1 / 1 shared
Fang, Q.
1 / 5 shared
Ashburn, P.
2 / 13 shared
Chart of publication period
2022
2020
2012

Co-Authors (by relevance)

  • Muskens, Otto L.
  • Simeoni, Mirko
  • Urbani, Alessandro
  • Mengali, Sandro
  • Xiao, Wei
  • Kees De Groot, C. H.
  • Wheeler, Callum
  • Gaspari, Matteo
  • Hillier, James A.
  • Kalfagiannis, Nikolaos
  • De Groot, Cornelis H.
  • Ye, Sheng
  • Zeimpekis, Ioannis
  • De Groot, Cornelis
  • Muskens, Otto
  • Groot, C. H. Kees De
  • Ebert, Martin
  • Reynolds, Jamie
  • De Planque, Maurits
  • Joshua, Daniel Akrofi
  • Chong, Harold
  • Hu, Ruoyu
  • Gunn, R.
  • Hakim, M. M. A.
  • Sultan, S. M.
  • Masaud, T. B.
  • Clark, O. D.
  • Fang, Q.
  • Ashburn, P.
OrganizationsLocationPeople

article

Effect of an oxide cap layer and fluorine implantation on the metal-induced lateral crystallization of amorphous silicon

  • Gunn, R.
  • Sun, Kai
  • Hakim, M. M. A.
  • Ashburn, P.
Abstract

In this work, we investigate the effect of oxide cap layer on the metal-induced lateral crystallization (MILC) of amorphous silicon. The MILC is characterized at temperatures in the range 550 to 428°C using Nomarski optical microscopy and Raman spectroscopy. It is shown that better lateral crystallization is obtained when the oxide cap layer is omitted, with the crystallization length increasing by 33% for a 15 hour anneal at 550°C. A smaller increase of about 10% is seen at lower temperatures between 525°C and 475°C and no increase is seen below 450°C. It is also shown that the detrimental effect of the oxide cap layer can be dramatically reduced by giving samples a fluorine implant prior to the MILC anneal. Raman spectroscopy shows that random grain growth is significantly less for unimplanted samples without an oxide cap and also for fluorine implanted samples both with and without an oxide cap. The crystallization length improvement for samples without an oxide cap layer is explained by the elimination of random grain crystallization at the interface between the amorphous silicon and the oxide cap layer.

Topics
  • impedance spectroscopy
  • amorphous
  • grain
  • laser emission spectroscopy
  • Silicon
  • random
  • optical microscopy
  • Raman spectroscopy
  • crystallization
  • grain growth