People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gomez-Romero, Pedro
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2018Unveiling BiVO4 nanorods as a novel anode material for high performance lithium ion capacitors: beyond intercalation strategiescitations
- 2018Energy harvesting from neutralization reactions with saline feedbackcitations
- 2018Hybrid graphene-polyoxometalates nanofluids as liquid electrodes for dual energy storage in novel flow cellscitations
- 2018Ultrathin hierarchical porous carbon nanosheets for high-performance supercapacitors and redox electrolyte energy storagecitations
- 2017Mimics of microstructures of Ni substituted Mn1-xNixCo2O4 for high energy density asymmetric capacitorscitations
- 2017Ultrahigh energy density supercapacitors through a double hybrid strategycitations
- 2017Nanostructured mixed transition metal oxides for high performance asymmetric supercapacitors: Facile synthetic strategycitations
- 2017Fundamentals of binary metal oxide-based supercapacitorscitations
- 2017Capacitive vs faradaic energy storage in a hybrid cell with LiFePO4/RGO positive electrode and nanocarbon negative electrodecitations
- 2016Aqueous synthesis of LiFePO4 with Fractal Granularitycitations
- 2016Electrochemical supercapacitive properties of polypyrrole thin films: influence of the electropolymerization methodscitations
- 2015Asymmetric supercapacitors based on hybrid CuO@Reduced Graphene Oxide@Sponge versus Reduced Graphene Oxide@Sponge Electrodescitations
- 2015An innovative 3-D nanoforest heterostructure made of polypyrrole coated silicon nanotrees for new high performance hybrid micro-supercapacitorscitations
- 2015Low-cost flexible supercapacitors with high-energy density based on nanostructured MnO2 and Fe2O3 thin films directly fabricated onto stainless steelcitations
- 2015A high voltage solid state symmetric supercapacitor based on graphene-polyoxometalate hybrid electrodes with a hydroquinone doped hybrid gel-electrolytecitations
Places of action
Organizations | Location | People |
---|
article
Capacitive vs faradaic energy storage in a hybrid cell with LiFePO4/RGO positive electrode and nanocarbon negative electrode
Abstract
We report an advanced device based on a Nitrogen-doped Carbon Nanopipes (N-CNP) negative electrode and a lithium iron phosphate (LiFePO<sub>4</sub>) positive electrode. We carefully balanced the cell composition (charge balance) and suppressed the initial irreversible capacity of the anode in the round of few cycles. We demonstrated an optimal performance in terms of specific capacity 170 mAh/g of LiFePO<sub>4</sub> with energy density of about 203 Wh kg<sup>−1</sup> and a stable operation for over 100 charge−discharge cycles. The components of this device (combining capacitive and faradaic electrodes) are low cost and easily scalable. This device has a performance comparable to those offered by the present technology of LIBs with the potential for faster charging; hence, we believe that the results disclosed in this work may open up new opportunities for energy storage devices.