Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Feng, Mingzhen

  • Google
  • 2
  • 16
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Local strain inhomogeneities during electrical triggering of a metal–insulator transition revealed by X-ray microscopy4citations
  • 2019Quantitative Analysis of Multi-Scale Heterogeneities in Complex Electrode Microstructures13citations

Places of action

Chart of shared publication
He, Wei
1 / 3 shared
Islam, Zahir
1 / 1 shared
Takamura, Yayoi
1 / 4 shared
Li, Junjie
1 / 2 shared
Poudyal, Ishwor
1 / 1 shared
Frano, Alex
1 / 2 shared
Schuller, Ivan K.
1 / 4 shared
Gunn, Brandon
1 / 2 shared
Tamura, Nobumichi
1 / 12 shared
Rollett, Anthony D.
1 / 14 shared
Hackett, Gregory A.
1 / 1 shared
Epting, William
1 / 1 shared
Litster, Shawn
1 / 1 shared
Mason, Jerry H.
1 / 1 shared
Abernathy, Harry W.
1 / 2 shared
Nuhfer, Noel T.
1 / 1 shared
Chart of publication period
2024
2019

Co-Authors (by relevance)

  • He, Wei
  • Islam, Zahir
  • Takamura, Yayoi
  • Li, Junjie
  • Poudyal, Ishwor
  • Frano, Alex
  • Schuller, Ivan K.
  • Gunn, Brandon
  • Tamura, Nobumichi
  • Rollett, Anthony D.
  • Hackett, Gregory A.
  • Epting, William
  • Litster, Shawn
  • Mason, Jerry H.
  • Abernathy, Harry W.
  • Nuhfer, Noel T.
OrganizationsLocationPeople

article

Quantitative Analysis of Multi-Scale Heterogeneities in Complex Electrode Microstructures

  • Rollett, Anthony D.
  • Hackett, Gregory A.
  • Epting, William
  • Litster, Shawn
  • Mason, Jerry H.
  • Abernathy, Harry W.
  • Nuhfer, Noel T.
  • Feng, Mingzhen
Abstract

<jats:p>A semi-empirical model is developed to quantitatively characterize electrode heterogeneities over the micro- and mesoscales, specifically between the relationship of the mean-squared normalized variance in the volume fraction, <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="mml-disp1" overflow="scroll"><mml:msup><mml:mrow><mml:mo>(</mml:mo><mml:mfrac><mml:msub><mml:mi>σ</mml:mi><mml:msub><mml:mi>Φ</mml:mi><mml:mi>V</mml:mi></mml:msub></mml:msub><mml:msub><mml:mover accent="true"><mml:mi>Φ</mml:mi><mml:mo>¯</mml:mo></mml:mover><mml:mi>V</mml:mi></mml:msub></mml:mfrac><mml:mo>)</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="i0001.gif" xlink:type="simple" /></jats:inline-formula>, and the mean particle size normalized linear dimension, <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="mml-disp2" overflow="scroll"><mml:mfrac><mml:mi>L</mml:mi><mml:msub><mml:mover accent="true"><mml:mi>a</mml:mi><mml:mo>¯</mml:mo></mml:mover><mml:mi>N</mml:mi></mml:msub></mml:mfrac></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="i0002.gif" xlink:type="simple" /></jats:inline-formula>. The model was developed analyzing data from five large-volume physical reconstructions – collected using Xe-plasma focused ion beam with SEM (PFIB-SEM) – of several commercial cell electrodes and from unique sets of synthetic microstructures designed to have controlled distributions in particle size and local volume fractions. When comparing physical reconstructions from distinct regions of the same electrode, millimeter length scale heterogeneities are also observed, even in microstructures with limited mesoscale variability. While the model is developed using synthetic microstructures, it is used to quantify three different types of heterogeneities in the commercial cells. The potential origins are discussed with respect to variations in particle size distributions in feedstocks and to phase distributions related to fabrication processes; the potential performance impacts are discussed with respect to two effective medium theory models. The characterization and analytical methodologies and model presented can support the design and development of improved electrodes.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • phase
  • scanning electron microscopy
  • theory
  • focused ion beam
  • quantitative determination method