Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Liu, Yanchen

  • Google
  • 2
  • 10
  • 48

Humboldt-Universität zu Berlin

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Role of the Microstructure in the Li-Storage Performance of Spinel-Structured High-Entropy (Mn,Fe,Co,Ni,Zn) Oxide Nanofibers4citations
  • 2023Charge Storage Mechanism in Electrospun Spinel‐Structured High‐Entropy (Mn<sub>0.2</sub>Fe<sub>0.2</sub>Co<sub>0.2</sub>Ni<sub>0.2</sub>Zn<sub>0.2</sub>)<sub>3</sub>O<sub>4</sub> Oxide Nanofibers as Anode Material for Li‐Ion Batteries44citations

Places of action

Chart of shared publication
Giorgetti, Marco
2 / 4 shared
Maisuradze, Mariam
2 / 2 shared
Pinna, Nicola
2 / 24 shared
Li, Min
2 / 10 shared
Santangelo, Saveria
2 / 17 shared
Noto, Vito Di
2 / 8 shared
Pagot, Gioele
2 / 8 shared
Aquilanti, Giuliana
2 / 13 shared
Ponti, Alessandro
2 / 6 shared
Triolo, Claudia
2 / 12 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Giorgetti, Marco
  • Maisuradze, Mariam
  • Pinna, Nicola
  • Li, Min
  • Santangelo, Saveria
  • Noto, Vito Di
  • Pagot, Gioele
  • Aquilanti, Giuliana
  • Ponti, Alessandro
  • Triolo, Claudia
OrganizationsLocationPeople

article

Role of the Microstructure in the Li-Storage Performance of Spinel-Structured High-Entropy (Mn,Fe,Co,Ni,Zn) Oxide Nanofibers

  • Giorgetti, Marco
  • Maisuradze, Mariam
  • Pinna, Nicola
  • Li, Min
  • Santangelo, Saveria
  • Noto, Vito Di
  • Pagot, Gioele
  • Aquilanti, Giuliana
  • Liu, Yanchen
  • Ponti, Alessandro
  • Triolo, Claudia
Abstract

<jats:title>Abstract</jats:title><jats:p>High-entropy oxides with spinel structure (SHEOs) are promising anode materials for next-generation lithium-ion batteries (LIBs). In this work, electrospun (Mn,Fe,Co,Ni,Zn) SHEO nanofibers produced under different conditions are evaluated as anode materials in LIBs and thoroughly characterised by a combination of analytical techniques. The variation of metal load (19.23 or 38.46 wt% relative to the polymer) in the precursor solution and of calcination conditions (700°C/0.5 h, or 700°C/2 h followed by 900°C/2 h) affects the morphology, microstructure, crystalline phase, and surface composition of the pristine SHEO nanofibers and the resulting electrochemical performance, whereas mechanism of Li storage does not substantially change. Causes of long-term (650 cycles) capacity fading are elucidated via ex situ synchrotron X-ray absorption spectroscopy. The results evidence that the larger amounts of Fe, Co, and Ni cations irreversibly reduced to the metallic form during cycling are responsible for faster capacity fading in nanofibers calcined under milder conditions. The microstructure of the active material plays a key role. Nanofibers composed by larger and better-crystallized grains, where a stable solid/electrolyte interphase forms, exhibit superior long-term stability (453 mAh g1 after 550 cycles at 0.5 A g1) and rate-capability (210 mAh g1 at 2 A g1).</jats:p>

Topics
  • morphology
  • surface
  • polymer
  • grain
  • crystalline phase
  • Lithium
  • x-ray absorption spectroscopy