People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Noto, Vito Di
University of Padua
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Mechanism of alteration in passivity of additively manufactured Ni-Fe-Cr Alloy 718 caused by minor carbon variationcitations
- 2024Role of the Microstructure in the Li-Storage Performance of Spinel-Structured High-Entropy (Mn,Fe,Co,Ni,Zn) Oxide Nanofiberscitations
- 2023Insights into the Photoelectrocatalytic Behavior of gCN-Based Anode Materials Supported on Ni Foamscitations
- 2023Charge Storage Mechanism in Electrospun Spinel‐Structured High‐Entropy (Mn<sub>0.2</sub>Fe<sub>0.2</sub>Co<sub>0.2</sub>Ni<sub>0.2</sub>Zn<sub>0.2</sub>)<sub>3</sub>O<sub>4</sub> Oxide Nanofibers as Anode Material for Li‐Ion Batteriescitations
- 2022Effect of relaxations on the conductivity of La1/2+1/2xLi1/2-1/2 xTi1-xAlxO3 fast ion conductorscitations
- 2018Interplay between chemical composition, synthetic parameters and ORR performance of “Pt-free” electrocatalysts for the ORR Including graphene-based “cores” and a carbon nitride “shell”citations
- 2017A lipophilic ionic liquid based on formamidinium cations and TFSI: The electric response and the effect of CO2 on the conductivity mechanismcitations
- 2015Hybrid polymer electrolytes based on linear siloxane networks and crosslinked polyether domains: Interplay between composition and properties
Places of action
Organizations | Location | People |
---|
article
Role of the Microstructure in the Li-Storage Performance of Spinel-Structured High-Entropy (Mn,Fe,Co,Ni,Zn) Oxide Nanofibers
Abstract
<jats:title>Abstract</jats:title><jats:p>High-entropy oxides with spinel structure (SHEOs) are promising anode materials for next-generation lithium-ion batteries (LIBs). In this work, electrospun (Mn,Fe,Co,Ni,Zn) SHEO nanofibers produced under different conditions are evaluated as anode materials in LIBs and thoroughly characterised by a combination of analytical techniques. The variation of metal load (19.23 or 38.46 wt% relative to the polymer) in the precursor solution and of calcination conditions (700°C/0.5 h, or 700°C/2 h followed by 900°C/2 h) affects the morphology, microstructure, crystalline phase, and surface composition of the pristine SHEO nanofibers and the resulting electrochemical performance, whereas mechanism of Li storage does not substantially change. Causes of long-term (650 cycles) capacity fading are elucidated via ex situ synchrotron X-ray absorption spectroscopy. The results evidence that the larger amounts of Fe, Co, and Ni cations irreversibly reduced to the metallic form during cycling are responsible for faster capacity fading in nanofibers calcined under milder conditions. The microstructure of the active material plays a key role. Nanofibers composed by larger and better-crystallized grains, where a stable solid/electrolyte interphase forms, exhibit superior long-term stability (453 mAh g1 after 550 cycles at 0.5 A g1) and rate-capability (210 mAh g1 at 2 A g1).</jats:p>