Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Redmond, Erin

  • Google
  • 1
  • 7
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Effect of Accelerated Stress Testing Conditions on Combined Chemical and Mechanical Membrane Durability in Fuel Cells8citations

Places of action

Chart of shared publication
Dutta, Monica
1 / 1 shared
Bahrami, Mohammadamin
1 / 1 shared
Lauritzen, Michael
1 / 1 shared
Chen, Yixuan
1 / 2 shared
Orfino, Francesco P.
1 / 1 shared
Kjeang, Erik
1 / 2 shared
Agapov, Alexander L.
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Dutta, Monica
  • Bahrami, Mohammadamin
  • Lauritzen, Michael
  • Chen, Yixuan
  • Orfino, Francesco P.
  • Kjeang, Erik
  • Agapov, Alexander L.
OrganizationsLocationPeople

article

Effect of Accelerated Stress Testing Conditions on Combined Chemical and Mechanical Membrane Durability in Fuel Cells

  • Redmond, Erin
  • Dutta, Monica
  • Bahrami, Mohammadamin
  • Lauritzen, Michael
  • Chen, Yixuan
  • Orfino, Francesco P.
  • Kjeang, Erik
  • Agapov, Alexander L.
Abstract

<jats:p>Understanding membrane degradation induced by combined chemical and mechanical stresses is critical to designing durable polymer electrolyte membrane fuel cells. Accelerated stress tests (ASTs) are usually designed and carried out to study membrane degradation and identify stresses leading to it. In this work, a customized small-scale fuel cell fixture designed for in situ X-ray computed tomography (XCT) imaging is utilized to study the impact of different AST conditions on combined chemical and mechanical membrane durability. The XCT imaging technique allows the acquisition of a tomographic dataset yielding an integrated 3D image stack, which in turn, is used to analyze and compare global membrane degradation mechanisms. It was identified that cell temperature and relative humidity (RH) strongly influence the chemical membrane degradation rate, whereas the mechanical degradation rate was promoted by RH cycles with high amplitude and short period, which were dynamically diagnosed through a single frequency electrochemical impedance spectroscopy technique developed to track membrane hydration. When applied consecutively, the high chemical and mechanical stress intensities produced a joint chemo-mechanical failure mode with distinct evidence of chemical (thinning) and mechanical (fatigue-fracture) contributions in a relatively short time. The proposed AST is thus recommended for chemo-mechanical membrane durability evaluation in fuel cells.</jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • tomography
  • fatigue
  • durability