Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cignoni, Paolo

  • Google
  • 6
  • 26
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2025Does Pb Underpotential Deposition Rearrange Surface-near Atoms in AgAu Films and Nanoparticles?citations
  • 2023Validating Electrochemical Active Surface Area Determination of Nanostructured Electrodes: Surface Oxide Reduction on AuPd Nanoparticles8citations
  • 2022Design And Construction Of a Bending-Active Plywood Structure: The Flexmaps Pavilion4citations
  • 2022Characterization of nanoparticles in diverse mixtures using localized surface plasmon resonance and nanoparticle tracking by dark-field microscopy with redox magnetohydrodynamics microfluidicscitations
  • 2022Electrochemical dealloying in a magnetic field – Tapping the potential for catalyst and material designcitations
  • 2020Automated design and analysis of reinforced and post-tensioned glass shells1citations

Places of action

Chart of shared publication
Clausmeyer, Jan
1 / 1 shared
Nettler, Dean-Robin
3 / 3 shared
Rurainsky, Christian
2 / 5 shared
Drautz, Ralf
1 / 25 shared
Savan, Alan
1 / 66 shared
Ludwig, Alfred
1 / 351 shared
Tschulik, Kristina
4 / 11 shared
Trzebiatowski, Lisa
1 / 1 shared
Trost, Oliver
1 / 1 shared
Kaiser, Christoph
1 / 1 shared
Hosseini, Pouya
1 / 3 shared
Muntoni, Alessandro
1 / 1 shared
Ponchio, Federico
1 / 1 shared
Pietroni, Nico
2 / 5 shared
Laccone, Francesco
2 / 4 shared
Callieri, Marco
1 / 1 shared
Alderighi, Thomas
1 / 1 shared
Sikes, Jazlynn C.
1 / 2 shared
Wonner, Kevin
1 / 1 shared
Fritsch, Ingrid
1 / 2 shared
Nicholson, Aaron
1 / 1 shared
Pahl, Thorben
1 / 1 shared
Kanokkanchana, Kannasoot
1 / 2 shared
Just, Annika
1 / 1 shared
Froli, Maurizio
1 / 5 shared
Malomo, Luigi
1 / 2 shared
Chart of publication period
2025
2023
2022
2020

Co-Authors (by relevance)

  • Clausmeyer, Jan
  • Nettler, Dean-Robin
  • Rurainsky, Christian
  • Drautz, Ralf
  • Savan, Alan
  • Ludwig, Alfred
  • Tschulik, Kristina
  • Trzebiatowski, Lisa
  • Trost, Oliver
  • Kaiser, Christoph
  • Hosseini, Pouya
  • Muntoni, Alessandro
  • Ponchio, Federico
  • Pietroni, Nico
  • Laccone, Francesco
  • Callieri, Marco
  • Alderighi, Thomas
  • Sikes, Jazlynn C.
  • Wonner, Kevin
  • Fritsch, Ingrid
  • Nicholson, Aaron
  • Pahl, Thorben
  • Kanokkanchana, Kannasoot
  • Just, Annika
  • Froli, Maurizio
  • Malomo, Luigi
OrganizationsLocationPeople

article

Validating Electrochemical Active Surface Area Determination of Nanostructured Electrodes: Surface Oxide Reduction on AuPd Nanoparticles

  • Trzebiatowski, Lisa
  • Trost, Oliver
  • Cignoni, Paolo
  • Nettler, Dean-Robin
  • Kaiser, Christoph
  • Hosseini, Pouya
  • Tschulik, Kristina
Abstract

<jats:title>Abstract</jats:title><jats:p>Accurate normalization of electrochemical active surface area (ECSA) of nanostructured catalysts and nanoparticles is of utmost importance for catalyst activity determination and comparability. Au<jats:sub>x</jats:sub>Pd<jats:sub>y</jats:sub> nanoparticles are a highly interesting example, as electrocatalysts for selective oxygen reduction reaction and alcohol oxidation. Most techniques used today for ECSA determination lack accurate validation for nanostructured electrodes and instead rely on reference values determined for macroelectrodes. This includes ECSA determination for Au<jats:sub>x</jats:sub>Pd<jats:sub>y</jats:sub> nanoparticles, most commonly done by potentiodynamic surface oxide reduction. Here we suggest a versatile approach to validate different ECSA determination techniques for nanoparticle-modified or nanostructured electrodes, using surface oxide reduction of Au<jats:sub>x</jats:sub>Pd<jats:sub>y</jats:sub> as an illustrative example. Combining this with volume determination by anodic stripping, we electrochemically estimate the NP diameter, which serves as an indication of the accuracy of the obtained ECSA values. Showcasing this for different nanoparticle compositions, we provide experimental conditions for determining Au<jats:sub>x</jats:sub>Pd<jats:sub>y</jats:sub> nanoparticle ECSA using surface oxide reduction and compare those to parameters reported for macroelectrodes. The approach we introduce herein can be readily applied to a number of different alloy systems, thus, providing a widely applicable approach to determine electrochemical surface areas and validate the transferability of existing macroelectrode characterization techniques to nanostructured or nanoparticle-modified electrodes.</jats:p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • surface
  • Oxygen
  • alcohol