Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Naujokaitis, Arnas

  • Google
  • 11
  • 53
  • 258

Center for Physical Sciences and Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2023Aluminum Anodizing in an Aqueous Solution of Formic Acid with Ammonium Heptamolybdate Additive3citations
  • 2023Effect of Oxalic Acid Additives on Aluminum Anodizing in Formic Acid Containing Ammonium Heptamolybdate1citations
  • 2022Design and Characterization of Nanostructured Titanium Monoxide Films Decorated with Polyaniline Species2citations
  • 2022Seed Layer Optimisation for Ultra-Thin Sb2Se3 Solar Cells on TiO2 by Vapour Transport Deposition1citations
  • 2020Atomic-Resolution EDX, HAADF, and EELS Study of GaAs1-xBix Alloys15citations
  • 2020Suppression of Electric Field-Induced Segregation in Sky-Blue Perovskite Light-Emitting Electrochemical Cells14citations
  • 2019Electronic structure of CsPbBr<sub>3−x</sub>Cl<sub>x</sub> perovskites: synthesis, experimental characterization, and DFT simulations80citations
  • 2019A few-minute synthesis of CsPbBr3 nanolasers with a high quality factor by spraying at ambient conditions71citations
  • 2019A few-minute synthesis of CsPbBr 3 nanolasers with a high quality factor by spraying at ambient conditions71citations
  • 2016Comparative Study of Electroless Platinum Deposition Using Multivalent Metal Ions or Hydrazine As Reducing Agentscitations
  • 2016Electroless Deposition of Cobalt-Tungsten-Boron Films from Glycine Containing Solutions As Barrier Layer Against Cu Diffusioncitations

Places of action

Chart of shared publication
Jagminas, Arunas
3 / 3 shared
Chernyakova, Katsiaryna
2 / 2 shared
Karpicz, Renata
2 / 2 shared
Matulaitiene, Ieva
1 / 1 shared
Jasulaitiene, Vitalija
2 / 9 shared
Klimas, Vaclovas
2 / 2 shared
Ramanavičius, Simonas
1 / 1 shared
Niaura, Gediminas
1 / 10 shared
Sabirovas, Tomas
1 / 2 shared
Drabavičius, Audrius
3 / 6 shared
Juškėnas, Remigijus
1 / 3 shared
Kondrotas, Rokas
1 / 5 shared
Pakštas, Vidas
5 / 10 shared
Vainauskas, Deividas
1 / 1 shared
Paulauskas, Tadas
1 / 2 shared
Devenson, Jan
1 / 2 shared
Čechavičius, Bronislovas
1 / 1 shared
Pačebutas, Vaidas
1 / 2 shared
Butkutė, Renata
1 / 2 shared
Li, Xiaoyan
1 / 9 shared
Krotkus, Arūnas
1 / 5 shared
Kamarauskas, Mindaugas
1 / 3 shared
Skapas, Martynas
1 / 5 shared
Vretenár, Viliam
1 / 2 shared
Čaplovičová, Mária
1 / 5 shared
Kociak, Mathieu
1 / 24 shared
Liashenko, Tatiana G.
2 / 2 shared
Pushkarev, Anatoly P.
3 / 3 shared
Zakhidov, Anvar A.
4 / 7 shared
Makarov, Sergey V.
3 / 9 shared
Franckevičius, Marius
3 / 6 shared
Cherotchenko, Evgeniia D.
1 / 1 shared
Khubezhov, Soslan A.
3 / 4 shared
Pushkarev, Anatoly
1 / 5 shared
Shelykh, Ivan A.
1 / 2 shared
Agapev, Kirill B.
1 / 1 shared
Polozkov, Roman G.
1 / 1 shared
Korolev, Viacheslav I.
2 / 2 shared
Zasedatelev, Anton
1 / 2 shared
Sannikov, Denis A.
2 / 2 shared
Lagoudakis, Pavlos
1 / 7 shared
Markina, Daria I.
2 / 2 shared
Komissarenko, Filipp E.
2 / 2 shared
Lagoudakis, Pavlos G.
1 / 2 shared
Zasedatelev, Anton V.
1 / 1 shared
Buzas, Vytenis
1 / 1 shared
Maciulis, Laurynas
1 / 1 shared
Stankeviciene, Ina
1 / 1 shared
Jagminiene, Aldona
1 / 1 shared
Tamasauskaite-Tamasiunaite, Loreta
2 / 5 shared
Norkus, Eugenijus
2 / 30 shared
Tumonis, Liudas
1 / 2 shared
Sukackienė, Zita
1 / 12 shared
Chart of publication period
2023
2022
2020
2019
2016

Co-Authors (by relevance)

  • Jagminas, Arunas
  • Chernyakova, Katsiaryna
  • Karpicz, Renata
  • Matulaitiene, Ieva
  • Jasulaitiene, Vitalija
  • Klimas, Vaclovas
  • Ramanavičius, Simonas
  • Niaura, Gediminas
  • Sabirovas, Tomas
  • Drabavičius, Audrius
  • Juškėnas, Remigijus
  • Kondrotas, Rokas
  • Pakštas, Vidas
  • Vainauskas, Deividas
  • Paulauskas, Tadas
  • Devenson, Jan
  • Čechavičius, Bronislovas
  • Pačebutas, Vaidas
  • Butkutė, Renata
  • Li, Xiaoyan
  • Krotkus, Arūnas
  • Kamarauskas, Mindaugas
  • Skapas, Martynas
  • Vretenár, Viliam
  • Čaplovičová, Mária
  • Kociak, Mathieu
  • Liashenko, Tatiana G.
  • Pushkarev, Anatoly P.
  • Zakhidov, Anvar A.
  • Makarov, Sergey V.
  • Franckevičius, Marius
  • Cherotchenko, Evgeniia D.
  • Khubezhov, Soslan A.
  • Pushkarev, Anatoly
  • Shelykh, Ivan A.
  • Agapev, Kirill B.
  • Polozkov, Roman G.
  • Korolev, Viacheslav I.
  • Zasedatelev, Anton
  • Sannikov, Denis A.
  • Lagoudakis, Pavlos
  • Markina, Daria I.
  • Komissarenko, Filipp E.
  • Lagoudakis, Pavlos G.
  • Zasedatelev, Anton V.
  • Buzas, Vytenis
  • Maciulis, Laurynas
  • Stankeviciene, Ina
  • Jagminiene, Aldona
  • Tamasauskaite-Tamasiunaite, Loreta
  • Norkus, Eugenijus
  • Tumonis, Liudas
  • Sukackienė, Zita
OrganizationsLocationPeople

article

Effect of Oxalic Acid Additives on Aluminum Anodizing in Formic Acid Containing Ammonium Heptamolybdate

  • Jagminas, Arunas
  • Chernyakova, Katsiaryna
  • Karpicz, Renata
  • Naujokaitis, Arnas
  • Klimas, Vaclovas
Abstract

<jats:p>This paper reports a systematic study of the role of oxalic acid additives in aluminum anodizing in formic acid containing ammonium heptamolybdate. Adding oxalic acid in a concentration range of 5–20 mM to the 0.4 M formic acid solution containing 0.03 M ammonium heptamolybdate improves anodic film growth, increasing the film thickness and smoothing strongly wavy interface between the film and aluminum, and adding 100 mM of oxalic acid results in an almost complete block of the regular anodic film formation. In the case of aluminum anodizing in formic acid, the ammonium heptamolybdate additive prevents aluminum dissolution more effectively than only oxalic acid. The role of oxalic acid in this process is only to improve film growth and morphology. However, ammonium heptamolybdate improves film growth by increasing its thickness. Linear sweep voltammetry studies combined with SEM investigations of alumina growth show that in heptamolybdate-containing electrolytes, a thin porous alumina film is formed at the beginning of the process. Then, when the electrolyte oxidation potential is reached, the thin film on the surface breaks, resulting in a significant increase in the anodizing surface, and anodic oxide begins to grow rapidly.</jats:p>

Topics
  • porous
  • impedance spectroscopy
  • surface
  • scanning electron microscopy
  • thin film
  • aluminium
  • voltammetry