Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Amin, Hatem

  • Google
  • 1
  • 8
  • 19

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Experimental and DFT Atomistic Insights into the Mechanism of Corrosion Protection of Low-Carbon Steel in an Acidic Medium by Polymethoxyflavones from Citrus Peel Waste19citations

Places of action

Chart of shared publication
Boudalia, Maria
1 / 4 shared
Girst, Gábor
1 / 1 shared
Campos, Othon S.
1 / 3 shared
Hunyadi, Attila
1 / 1 shared
Garcia-Anton, Jose
1 / 21 shared
Raji, Mounir
1 / 1 shared
Bellaouchou, Abdelkbir
1 / 6 shared
Najem, Ayoub
1 / 3 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Boudalia, Maria
  • Girst, Gábor
  • Campos, Othon S.
  • Hunyadi, Attila
  • Garcia-Anton, Jose
  • Raji, Mounir
  • Bellaouchou, Abdelkbir
  • Najem, Ayoub
OrganizationsLocationPeople

article

Experimental and DFT Atomistic Insights into the Mechanism of Corrosion Protection of Low-Carbon Steel in an Acidic Medium by Polymethoxyflavones from Citrus Peel Waste

  • Boudalia, Maria
  • Girst, Gábor
  • Amin, Hatem
  • Campos, Othon S.
  • Hunyadi, Attila
  • Garcia-Anton, Jose
  • Raji, Mounir
  • Bellaouchou, Abdelkbir
  • Najem, Ayoub
Abstract

<jats:p>Developing green anticorrosive films is gaining great attention in science and engineering. Citrus fruit peels are mainly discarded as waste, although they can be an excellent repository of phytochemicals, that can be exploited as mitigating agents for corrosion. Herein, we report the high anticorrosion activity of a citrus extract for low-carbon steel in 1 M HCl solution at different temperatures. The main extract constituents were identified by MS and NMR. Two polymethoxyflavones (PMFs), namely nobiletin and heptamethoxyflavone, were identified as major constituents of the extract and the crude PMFs-based extract was investigated for corrosion protection. Using potentiodynamic polarization, weight loss and electrochemical impedance spectroscopy (EIS) methods, this extract revealed improved inhibition efficiency of 94%. The inhibition mechanism was elucidated by considering electrochemical kinetics and adsorption thermodynamics. SEM and UV–vis supported the electrochemical results. PMFs-based extract acted as a mixed-type inhibitor with a Langmuir model of adsorption. Importantly, DFT simulations provided atomic-level insights into the inhibition mechanism and unraveled donor-acceptor interactions between the methoxy groups of PMFs and iron atoms, facilitating the formation of a stable inhibition adsorption layer, and thus supporting the experimental findings. In addition to the physical barrier effect of PMF inhibitor, <jats:italic>π</jats:italic>-back bonding effect between PMF and steel was suggested.</jats:p><jats:p><jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jesacfa69-ga.jpg" xlink:type="simple" /></jats:inline-formula></jats:p>

Topics
  • Carbon
  • corrosion
  • scanning electron microscopy
  • simulation
  • steel
  • mass spectrometry
  • density functional theory
  • iron
  • electrochemical-induced impedance spectroscopy
  • Nuclear Magnetic Resonance spectroscopy