People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Yang, Guang
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Mechanical Milling – Induced Microstructure Changes in Argyrodite LPSCl Solid‐State Electrolyte Critically Affect Electrochemical Stabilitycitations
- 2024CEERS: 7.7 μm PAH Star Formation Rate Calibration with JWST MIRIcitations
- 2023Tuned Reactivity at the Lithium Metal–Argyrodite Solid State Electrolyte Interphasecitations
- 2023Adverse Effects of Trace Non-polar Binder on Ion Transport in Free-standing Sulfide Solid Electrolyte Separatorscitations
- 2023CEERS: 7.7 {mu}m PAH Star Formation Rate Calibration with JWST MIRI
- 2023CEERS: 7.7 ${mu}$m PAH Star Formation Rate Calibration with JWST MIRI
- 2022Benchmarking Solid-State Batteries Containing Sulfide Separators: Effects of Electrode Composition and Stack Pressurecitations
- 2015Effect of physical aging on fracture behavior of Te 2 As 3 Se 5 glass fiberscitations
- 2013Physical properties of the GexSe1 − x glasses in the 0 < x < 0.42 range in correlation with their structurecitations
- 2013Effect of Physical Aging Conditions on the Mechanical Properties of Te2As3Se5 (TAS) Glass Fiberscitations
- 2012Fragile-strong behavior in the AsxSe1-x glass forming system in relation to structural dimensionalitycitations
- 2011Low-Voltage p- and n-Type Organic Self-Assembled Monolayer Field Effect Transistorscitations
- 2010Correlation between structure and physical properties of chalcogenide glasses in the AsxSe1-x systemcitations
Places of action
Organizations | Location | People |
---|
article
Adverse Effects of Trace Non-polar Binder on Ion Transport in Free-standing Sulfide Solid Electrolyte Separators
Abstract
<jats:p>Sulfide solid-state electrolyte (SE) possesses high room-temperature ionic conductivity. However, fabrication of the free-standing, sheet-type thin sulfide SE film electrolyte to enable all-solid-state batteries to deliver high energy and power density remains challenging. Herein we show that argyrodite sulfide (Li<jats:sub>6</jats:sub>PS<jats:sub>5</jats:sub>Cl) SE can be slurry cast to form free-standing films with low (≤5 wt%) loadings of poly(isobutylene) (PIB) binder. Two factors contribute to a lower areal specific resistance (ASR) of the thin film SEs benchmarked to the pristine powder pellet SSE counterparts: i) 1–2 orders reduced thickness and ii) reasonably comparable ionic conductivity at room temperature after the isostatic pressing process. Nevertheless, an increasing polymer binder loading inevitably introduced voids in the thin film SEs, compromising anode/electrolyte interfacial ion transport. Our findings highlight that electrolyte/electrode interfacial stability, as well as the selection of slurry components, including sulfide SE, binder, and solvent, play essential roles in thin film sulfide electrolyte development.</jats:p>