People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tsai, Wan-Yu
University of Lille
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2023Adverse Effects of Trace Non-polar Binder on Ion Transport in Free-standing Sulfide Solid Electrolyte Separatorscitations
- 2022Benchmarking Solid-State Batteries Containing Sulfide Separators: Effects of Electrode Composition and Stack Pressurecitations
- 2021Molten Salt Assisted Low-Temperature Electro-Catalytic Graphitization of Coal Charscitations
- 2015Graphene-like carbide derived carbon for high-power supercapacitorscitations
- 2014Graphene-like carbide derived carbon for high-power supercapacitorscitations
Places of action
Organizations | Location | People |
---|
article
Adverse Effects of Trace Non-polar Binder on Ion Transport in Free-standing Sulfide Solid Electrolyte Separators
Abstract
<jats:p>Sulfide solid-state electrolyte (SE) possesses high room-temperature ionic conductivity. However, fabrication of the free-standing, sheet-type thin sulfide SE film electrolyte to enable all-solid-state batteries to deliver high energy and power density remains challenging. Herein we show that argyrodite sulfide (Li<jats:sub>6</jats:sub>PS<jats:sub>5</jats:sub>Cl) SE can be slurry cast to form free-standing films with low (≤5 wt%) loadings of poly(isobutylene) (PIB) binder. Two factors contribute to a lower areal specific resistance (ASR) of the thin film SEs benchmarked to the pristine powder pellet SSE counterparts: i) 1–2 orders reduced thickness and ii) reasonably comparable ionic conductivity at room temperature after the isostatic pressing process. Nevertheless, an increasing polymer binder loading inevitably introduced voids in the thin film SEs, compromising anode/electrolyte interfacial ion transport. Our findings highlight that electrolyte/electrode interfacial stability, as well as the selection of slurry components, including sulfide SE, binder, and solvent, play essential roles in thin film sulfide electrolyte development.</jats:p>