Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Christensen, Jens Ole

  • Google
  • 3
  • 5
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Performance and sulfur tolerance of a short stack with solid oxide cells using infiltrated strontium titanate based anodes4citations
  • 2023Low Temperature Performance and Durability of Solid Oxide Fuel Cells with Titanate Based Fuel Electrodes Using Reformate Fuel2citations
  • 2021Performance of Metal Supported SOFCs Operated in HydrocarbonFuels and at Low (>650 ˚C) Temperatures9citations

Places of action

Chart of shared publication
Hagen, Anke
3 / 30 shared
Mai, A.
1 / 10 shared
Longo, G.
1 / 3 shared
Bausinger, H.
1 / 1 shared
Sudireddy, Bhaskar Reddy
3 / 41 shared
Chart of publication period
2023
2021

Co-Authors (by relevance)

  • Hagen, Anke
  • Mai, A.
  • Longo, G.
  • Bausinger, H.
  • Sudireddy, Bhaskar Reddy
OrganizationsLocationPeople

article

Low Temperature Performance and Durability of Solid Oxide Fuel Cells with Titanate Based Fuel Electrodes Using Reformate Fuel

  • Hagen, Anke
  • Sudireddy, Bhaskar Reddy
  • Christensen, Jens Ole
Abstract

The Ni/YSZ composite electrode is conventionally used for solid oxide cells, in electrolysis (SOEC) as well as fuel cell (SOFC) operation. For enhanced electrochemical performance at low temperature, mechanical durability, and impurity tolerance, alternative fuel electrode materials and cell configurations are required. In this paper we have studied a metal supported cell (MSC) with a titanate-based fuel electrode (La<sub>0.4</sub>Sr<sub>0.4</sub>Fe<sub>0.03</sub>Ni<sub>0.03</sub>Ti<sub>0.94</sub>O<sub>3</sub>, LSFNT) for its fuel cell performance using carbon containing fuel and compared to a state of the art (SoA) fuel electrode supported cell with a Ni/YSZ fuel electrode. In hydrogen fuel, the cells showed similar performance at intermediate and low temperatures (750 to 650°C), although the ASR is slightly higher for the MSC at all temperatures and steam/hydrogen ratios. Additionally, the MSC showed fair initial performance in reformate type fuel compositions (CO/steam and CO/steam/hydrogen), i.e. the fuel electrode possesses activity for the water gas shift reaction, which opens the possibility to use such cells with hydrocarbon fuels after a pre-reformer. Durability testing in pre-reformed fuel gas revealed that further fuel electrode tailoring is required to minimize cell degradation in carbon containing fuels.

Topics
  • impedance spectroscopy
  • Carbon
  • composite
  • Hydrogen
  • durability