People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Naujokaitis, Arnas
Center for Physical Sciences and Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2023Aluminum Anodizing in an Aqueous Solution of Formic Acid with Ammonium Heptamolybdate Additivecitations
- 2023Effect of Oxalic Acid Additives on Aluminum Anodizing in Formic Acid Containing Ammonium Heptamolybdatecitations
- 2022Design and Characterization of Nanostructured Titanium Monoxide Films Decorated with Polyaniline Speciescitations
- 2022Seed Layer Optimisation for Ultra-Thin Sb2Se3 Solar Cells on TiO2 by Vapour Transport Depositioncitations
- 2020Atomic-Resolution EDX, HAADF, and EELS Study of GaAs1-xBix Alloyscitations
- 2020Suppression of Electric Field-Induced Segregation in Sky-Blue Perovskite Light-Emitting Electrochemical Cellscitations
- 2019Electronic structure of CsPbBr<sub>3−x</sub>Cl<sub>x</sub> perovskites: synthesis, experimental characterization, and DFT simulationscitations
- 2019A few-minute synthesis of CsPbBr3 nanolasers with a high quality factor by spraying at ambient conditionscitations
- 2019A few-minute synthesis of CsPbBr 3 nanolasers with a high quality factor by spraying at ambient conditionscitations
- 2016Comparative Study of Electroless Platinum Deposition Using Multivalent Metal Ions or Hydrazine As Reducing Agents
- 2016Electroless Deposition of Cobalt-Tungsten-Boron Films from Glycine Containing Solutions As Barrier Layer Against Cu Diffusion
Places of action
Organizations | Location | People |
---|
article
Aluminum Anodizing in an Aqueous Solution of Formic Acid with Ammonium Heptamolybdate Additive
Abstract
<jats:p>Morphology, composition, and fluorescence properties of anodic alumina/carbon composites formed in an aqueous solution of formic acid with ammonium heptamolybdate additive at 60–80 V were studied concerning the amount and state of carbon embedded in the alumina structure. According to scanning electron microscopy studies, the composites possess a hierarchical structure with multi-branched pores with a dense, cracked cover layer on the film surface. On the reverse side (i.e., anodizing front), hexagonal-shaped cells with an average diameter of about 180 nm were formed. Linear sweep voltammetry and study of current transient curves demonstrated that the anodizing process is non-steady, which led to the generation of non-uniform current pathways and resulted in the formation of the multi-brunched porous structure. Thermogravimetry/differential thermal analysis and infrared spectroscopy showed that the average carbon content is ca. 5.5 mass%, and the carbon embedded in the alumina is in the form of CO<jats:sub>2</jats:sub>, CO, carboxylate ions, and <jats:italic>a</jats:italic>-C:H. X-ray-induced Auger electron spectroscopy of the surface and reverse sides of the films proved that carbon is not only on the surface but also is homogeneously distributed through the oxide layer. According to fluorescence studies, alumina/carbon composites have a wide blue fluorescence in the wavelength range of 350–700 nm with a maximum at around 455 and 460 nm for surface and reverse sides, respectively. Our findings imply that the fluorescence spectrum dynamics is non-exponential and can be described as a superposition of several decay components. These can be different carbon-containing compounds and functional groups, such as OH, C=O, and COOH.</jats:p>