Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jolayemi, Bukola

  • Google
  • 3
  • 8
  • 24

Institute of Electronics, Microelectronics and Nanotechnology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023High Throughput Characterization Methods at the Wafer Scale for Sputtered Films Used in Micro-Supercapacitors and Li-Ion Micro-Batteriescitations
  • 2022Sputtered (Fe,Mn)<sub>3</sub>O<sub>4</sub> Spinel Oxide Thin Films for Micro-Supercapacitor12citations
  • 2022Sputtered (Fe,Mn) 3 O 4 Spinel Oxide Thin Films for Micro-Supercapacitor12citations

Places of action

Chart of shared publication
Hallot, Maxime
1 / 10 shared
Roussel, Pascal
3 / 65 shared
Leviel, Clément
1 / 1 shared
Dinh, Khac Huy
1 / 3 shared
Jrondi, Aiman
1 / 2 shared
Lethien, Christophe
3 / 26 shared
Buvat, Gaetan
2 / 2 shared
Brousse, Thierry
2 / 35 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Hallot, Maxime
  • Roussel, Pascal
  • Leviel, Clément
  • Dinh, Khac Huy
  • Jrondi, Aiman
  • Lethien, Christophe
  • Buvat, Gaetan
  • Brousse, Thierry
OrganizationsLocationPeople

article

Sputtered (Fe,Mn)<sub>3</sub>O<sub>4</sub> Spinel Oxide Thin Films for Micro-Supercapacitor

  • Jolayemi, Bukola
  • Roussel, Pascal
  • Lethien, Christophe
  • Buvat, Gaetan
  • Brousse, Thierry
Abstract

<jats:p>The scaling up of wireless operating microelectronics for upcoming Internet of Things (IoT) applications demands high-performance micro-supercapacitors (MSCs) with corresponding high-energy and power capabilities. Indeed, this necessitates the quest for MSC’s electrode materials capable of delivering high energy density at high charge/discharge rates. Many multicationic oxides, such as spinel manganese-iron compounds, demonstrate good pseudocapacitive properties as positive electrodes in conventional supercapacitors. However, fulfilling the required fabrication techniques is a challenge for their applications in MSCs. Hence, this study, for the first time, demonstrates the successful deposition of spinel Mn-Fe thin films on a functional platinum-based current collector. The deposition is achieved in a reactive oxygen environment via reactive DC magnetron sputtering techniques and subsequently annealed ex situ at 600 °C in a nitrogen environment. The electrochemical signature in neutral 1 M Na<jats:sub>2</jats:sub>SO<jats:sub>4</jats:sub> aqueous electrolyte is comparable to those reported for spinel type Mn-Fe bulk counterparts. The areal capacitance at 10 mV.s<jats:sup>−1</jats:sup> is 15.5 mF.cm<jats:sup>−2</jats:sup> for 1 <jats:italic>μ</jats:italic>m thick film, exhibiting excellent coulombic efficiency (close to 100%) and long-term cycle stability after 10,000 cycles. Thus, the synthesis of the multicationic pseudocapacitive oxides via compatible microelectronic deposition methods has set a prospective path to achieve very high-performance MSCs for future IoT applications.</jats:p><jats:p><jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jesaca050-ga.jpg" xlink:type="simple" /></jats:inline-formula></jats:p>

Topics
  • Deposition
  • density
  • impedance spectroscopy
  • compound
  • energy density
  • thin film
  • Oxygen
  • Platinum
  • reactive
  • Nitrogen
  • iron
  • Manganese