Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Salihi, Hassan

  • Google
  • 1
  • 5
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Enhancing Heat Removal and H<sub>2</sub>O Retention Capability of Passive Air-Cooled Polymer Electrolyte Membrane Fuel Cells by Tailoring Cathode Flow-Field Design4citations

Places of action

Chart of shared publication
Vaz, Neil
1 / 2 shared
Ju, Hyunchul
1 / 1 shared
Jung, Yoonju
1 / 1 shared
Alam, Afroz
1 / 1 shared
Chinannai, Muhammad Faizan
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Vaz, Neil
  • Ju, Hyunchul
  • Jung, Yoonju
  • Alam, Afroz
  • Chinannai, Muhammad Faizan
OrganizationsLocationPeople

article

Enhancing Heat Removal and H<sub>2</sub>O Retention Capability of Passive Air-Cooled Polymer Electrolyte Membrane Fuel Cells by Tailoring Cathode Flow-Field Design

  • Vaz, Neil
  • Ju, Hyunchul
  • Jung, Yoonju
  • Alam, Afroz
  • Chinannai, Muhammad Faizan
  • Salihi, Hassan
Abstract

<jats:p>This paper reports novel cathode flow-field designs for passive typed air-cooled polymer electrolyte membrane fuel cells (PEMFCs) to help alleviate electrolyte dehydration and performance degradation issues under excess dry air supply conditions. The proposed flow-field designs include 7 three-dimensional (3D) patterned designs in addition to a parallel channel configuration equipped with rectangular baffles to control the airflow for more efficient heat removal. The designs were evaluated numerically using 3D, two-phase PEMFC simulations. Compared to a typical parallel flow channel configuration, the proposed flow-field designs show better heat removal and water retention capability. The improvement in single cell voltage was around 13–75 mV at an operating current density of 0.5 A cm<jats:sup>−2</jats:sup>, whereas the larger pressure drops around <jats:inline-formula><jats:tex-math> <?CDATA ${x02206}P$?> </jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mo>∆</mml:mo><mml:mi>P</mml:mi></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jesac9ee0ieqn1.gif" xlink:type="simple" /></jats:inline-formula> = 6.9–317.6 Pa cm<jats:sup>−1</jats:sup> were required because of the more complex flow-field configurations compared to the simple straight parallel channel geometry (<jats:inline-formula><jats:tex-math> <?CDATA ${x02206}P$?> </jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mo>∆</mml:mo><mml:mi>P</mml:mi></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jesac9ee0ieqn2.gif" xlink:type="simple" /></jats:inline-formula> = 7.4 Pa cm<jats:sup>−1</jats:sup>). This work presents a comprehensive understanding of air-cooled PEMFC operating characteristics under excessive dry air supply conditions and a new design strategy for cathode flow-fields.</jats:p>

Topics
  • density
  • polymer
  • phase
  • simulation
  • current density