Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Han, Sang-Don

  • Google
  • 1
  • 6
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Evaluating the Effect of Electrolyte Additive Functionalities on NMC622/Si Cell Performance15citations

Places of action

Chart of shared publication
Schulze, Maxwell C.
1 / 1 shared
Frisco, Sarah
1 / 1 shared
Rynearson, Leah
1 / 1 shared
Teeter, Glenn
1 / 3 shared
Lucht, Brett
1 / 1 shared
Neale, Nathan R.
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Schulze, Maxwell C.
  • Frisco, Sarah
  • Rynearson, Leah
  • Teeter, Glenn
  • Lucht, Brett
  • Neale, Nathan R.
OrganizationsLocationPeople

article

Evaluating the Effect of Electrolyte Additive Functionalities on NMC622/Si Cell Performance

  • Schulze, Maxwell C.
  • Han, Sang-Don
  • Frisco, Sarah
  • Rynearson, Leah
  • Teeter, Glenn
  • Lucht, Brett
  • Neale, Nathan R.
Abstract

<jats:p>Unstable electrode/electrolyte interface is the major cause of degradation for silicon (Si)-based anodes for lithium (Li)-ion batteries. Development of functional electrolyte additives can provide a viable path toward stabilizing the dynamic Si/electrolyte interface, which will benefit the development of high energy density Li-ion batteries. Here, we evaluate polymerizable electrolyte additives with varying functional groups (fluorocarbon, thiophosphate, and fluorophosphazene). The additives are examined using LiNi<jats:sub>0.6</jats:sub>Mn<jats:sub>0.2</jats:sub>Co<jats:sub>0.2</jats:sub>O<jats:sub>2</jats:sub>/Si full cells where the cycle performance and impedance are measured. Electrochemical tests show that the fluorine-containing additives provide better passivation at the Si electrode, leading to enhanced full cell performance. Among the three additives examined, best electrochemical performance is observed from the fluorocarbon-containing compound, followed by fluorophosphazene- and thiophosphate-containing compounds. Characterization of the solid electrolyte interphase (SEI) on cycled electrodes using Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) reveal that higher concentration of fluorine and lithium oxide, and lower concentration of carbonate and organic species correlate with enhanced electrochemical performance.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • compound
  • energy density
  • x-ray photoelectron spectroscopy
  • Silicon
  • Lithium
  • Fourier transform infrared spectroscopy
  • atomic emission spectroscopy
  • Auger electron spectroscopy