People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Schwab, Christian
Forschungszentrum Jülich
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2024Correlative characterization of plasma etching resistance of various aluminum garnetscitations
- 2024Correlative characterization of plasma etching resistance of various aluminum garnets
- 2024Direct Precursor Route for the Fabrication of LLZO Composite Cathodes for Solid‐State Batteries
- 2022Anhydrous LiNbO<sub>3</sub> Synthesis and Its Application for Surface Modification of Garnet Type Li-Ion Conductorscitations
- 2014A laser locked Fabry-Perot etalon with 3 cm/s stability for spectrograph calibrationcitations
Places of action
Organizations | Location | People |
---|
article
Anhydrous LiNbO<sub>3</sub> Synthesis and Its Application for Surface Modification of Garnet Type Li-Ion Conductors
Abstract
<jats:p>In our work we demonstrate a facile, water-free synthesis of amorphous lithium niobate (LiNbO<jats:sub>3</jats:sub>) layers. Our developed method also enables the coating of substrates in inert atmosphere with simple, industrial scalable methods. As verification, a 120 nm thin LiNbO<jats:sub>3</jats:sub> layer was deposited on the garnet type lithium ion conductor Li<jats:sub>6.45</jats:sub>Al<jats:sub>0.05</jats:sub>La<jats:sub>3</jats:sub>Zr<jats:sub>1.6</jats:sub>Ta<jats:sub>0.4</jats:sub>O<jats:sub>12</jats:sub> (LLZTO) to improve its interface to lithium metal and reduce dendrite formation. The application of the thin film reduced the interface resistance between LLZTO and lithium metal to 1.02(13) Ω∙cm<jats:sup>2</jats:sup> and increased the critical current density for dendrite formation to at least 0.5 mA cm<jats:sup>−2</jats:sup>. The chemical stability of the LiNbO<jats:sub>3</jats:sub> thin film in contact with Li-metal was verified by SEM, XPS and ToF-SIMS.</jats:p>