Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chin, Matthew A.

  • Google
  • 1
  • 4
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Tuning the Porous Structure in PMMA-Templated Mesoporous MoO<sub>2</sub> for Pseudocapacitive Li-Ion Electrodes5citations

Places of action

Chart of shared publication
Robertson, Daniel
1 / 1 shared
Lesel, Benjamin K.
1 / 2 shared
Yan, Yan
1 / 1 shared
Tolbert, Sarah
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Robertson, Daniel
  • Lesel, Benjamin K.
  • Yan, Yan
  • Tolbert, Sarah
OrganizationsLocationPeople

article

Tuning the Porous Structure in PMMA-Templated Mesoporous MoO<sub>2</sub> for Pseudocapacitive Li-Ion Electrodes

  • Robertson, Daniel
  • Lesel, Benjamin K.
  • Chin, Matthew A.
  • Yan, Yan
  • Tolbert, Sarah
Abstract

<jats:p>MoO<jats:sub>2</jats:sub> is an exciting candidate for next-generation energy storage. It can be used for fast-charging applications in nanoscale form, but its kinetic performance is often limited by insulating MoO<jats:sub>3</jats:sub> surface oxide layers. Here, we developed methods to produce polymer-templated porous MoO<jats:sub>2</jats:sub> powders where electrical conductivity was well-maintained throughout the structure, even in the presence of some surface oxidation. Porosity, pore size, and crystallite size were controlled by varying the amount and size of the colloidal templates and through calcination temperature. The electrochemical performance was correlated with nanoscale structure: samples with high porosity, medium pore sizes, and good crystallinity display optimal rate capabilities, with over 100 mAh g<jats:sup>−1</jats:sup> delivered in 3 min and 93% capacity retention after 1000 cycles. Kinetic studies were performed on samples with the largest and smallest crystallite sizes to understand the charge storage mechanism. In the sample with the smallest crystallite size, 85% of the total stored charge was capacitive, compared to 60% for the largest crystallite size. Sloping voltage profiles in materials with smaller domain sizes further suggest suppression of intercalation-induced phase transitions. This work thus provides insights into the mechanisms of charge storage in nanoscale MoO<jats:sub>2</jats:sub> and design parameters for the production of fast charging materials.</jats:p><jats:p><jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jesac63f8-ga.jpg" xlink:type="simple" /></jats:inline-formula></jats:p>

Topics
  • porous
  • impedance spectroscopy
  • pore
  • surface
  • polymer
  • phase
  • phase transition
  • porosity
  • electrical conductivity
  • crystallinity