Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Santos, Hugo

  • Google
  • 2
  • 14
  • 8

University of Helsinki

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Diphenyl ditelluride assisted synthesis of noble metal-based silver-telluride 2D organometallic nanofibers with enhanced aggregation-induced emission (AIE) after oleylamine treatmentcitations
  • 2022The Substrate Morphology Effect for Sulfur-Rich Amorphous Molybdenum Sulfide for Electrochemical Hydrogen Evolution Reaction8citations

Places of action

Chart of shared publication
Fernandez-Loderio, Javier
1 / 1 shared
Fernandez-Loderio, Adrian
1 / 1 shared
Rodriguez-Gonz, Benito
1 / 1 shared
Savvidou, Aikaterini Flessa
1 / 1 shared
Duarte, Frederico
1 / 2 shared
Djafari, Jamila
1 / 3 shared
Santos, Alcindo Aparecido Dos
1 / 1 shared
Capelo-Martinez, Jose Luis
1 / 1 shared
Lodeiro, Carlos
1 / 25 shared
Bals, Sara
1 / 93 shared
Balicas, Luis
1 / 3 shared
Bladt, Eva
1 / 17 shared
Mascaro, Lucia Helena
1 / 1 shared
Medina, Marina
1 / 1 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Fernandez-Loderio, Javier
  • Fernandez-Loderio, Adrian
  • Rodriguez-Gonz, Benito
  • Savvidou, Aikaterini Flessa
  • Duarte, Frederico
  • Djafari, Jamila
  • Santos, Alcindo Aparecido Dos
  • Capelo-Martinez, Jose Luis
  • Lodeiro, Carlos
  • Bals, Sara
  • Balicas, Luis
  • Bladt, Eva
  • Mascaro, Lucia Helena
  • Medina, Marina
OrganizationsLocationPeople

article

The Substrate Morphology Effect for Sulfur-Rich Amorphous Molybdenum Sulfide for Electrochemical Hydrogen Evolution Reaction

  • Mascaro, Lucia Helena
  • Medina, Marina
  • Santos, Hugo
Abstract

<jats:p>Amorphous molybdenum sulfide (MoS<jats:sub>x</jats:sub>) is a promising material for hydrogen evolution reaction (HER) due to its nearly zero hydrogen adsorption free energy at the sulfur (S) edge-sites. To prepare more efficient MoS<jats:sub>x</jats:sub>-based electrocatalysts, new attempts are required to increase the exposure of the MoS<jats:sub>x</jats:sub> lateral size and, therefore, increase the S atom’s contents. The majority of studies reported in the literature investigate MoS<jats:sub>x</jats:sub> over conductive substrates. However, MoS<jats:sub>x</jats:sub> can be electrodeposited over inexpensive and chemically stable platforms, such as semiconductors. This work presents the semiconductor substrate morphology effect for prepared sulfur-rich MoS<jats:sub>x</jats:sub> for electrochemical hydrogen evolution reaction. The electrodes are prepared by cyclic voltammetry with 25 cycles over TiO<jats:sub>2</jats:sub> film and TiO<jats:sub>2</jats:sub> nanotubes (TiO<jats:sub>2</jats:sub>NT) substrates. The MoS<jats:sub>x</jats:sub> deposit on TiO<jats:sub>2</jats:sub>NT presents an increase S atoms contents and exhibits excellent HER activity with a low overpotential of 93 ± 7.5 mV to reach −10 mA cm<jats:sup>−2</jats:sup> and a higher exchange current density equal to 91 <jats:italic>μ</jats:italic>A cm<jats:sup>−2</jats:sup>, and a smaller Tafel slope of 43 mV dec<jats:sup>−1</jats:sup>.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • molybdenum
  • amorphous
  • nanotube
  • semiconductor
  • Hydrogen
  • current density
  • cyclic voltammetry