Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sanga, Nelia

  • Google
  • 1
  • 3
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Simultaneous Adsorptive Stripping Voltammetric Analysis of Heavy Metals at Graphenated Cupferron Pencil Rods6citations

Places of action

Chart of shared publication
Iwuoha, Emmanuel
1 / 3 shared
Leve, Zandile
1 / 1 shared
Jahed, Nazeem
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Iwuoha, Emmanuel
  • Leve, Zandile
  • Jahed, Nazeem
OrganizationsLocationPeople

article

Simultaneous Adsorptive Stripping Voltammetric Analysis of Heavy Metals at Graphenated Cupferron Pencil Rods

  • Sanga, Nelia
  • Iwuoha, Emmanuel
  • Leve, Zandile
  • Jahed, Nazeem
Abstract

<jats:p>Electroanalysis of heavy metal ions in the presence of cupferron ligands has been extensively studied due to its ability to form stable metallic coordination complexes. Herein, electrochemically reduced graphene oxide (ERGO) sheets were for the first time employed in conjunction with low-cost, disposable pencil graphite rods and in situ plated thin mercury films (HgF) for the simultaneous detection of Cd<jats:sup>2+</jats:sup>, Cu<jats:sup>2+</jats:sup>, Pb<jats:sup>2+</jats:sup>, and Zn<jats:sup>2+</jats:sup> in the presence of cupferron as a chelating agent by square-wave adsorptive cathodic stripping voltammetry (SW-AdCSV). The technique is based on the catalytic reduction of adsorbed cupferron-metal ion complexes at the surface of the ERGO-HgF-PGE at 0.1 V for 60 s in 0.1 M acetate buffer solution (pH 4.6). Owing to the improved electronic and surface effects associated with ERGO inclusion, improved sensitivity was further achieved. Under optimized conditions, the ERGO-HgF-PGE showed a linear relationship from 20 to 200 <jats:italic>μ</jats:italic>g.l<jats:sup>−1</jats:sup> with detection limits below the US-EPA of 0.17 <jats:italic>μ</jats:italic>g.l<jats:sup>−1</jats:sup>, 0.02 <jats:italic>μ</jats:italic>g.l<jats:sup>−1</jats:sup>, 0.17 <jats:italic>μ</jats:italic>g.l<jats:sup>−1</jats:sup> and 0.14 <jats:italic>μ</jats:italic>g.l<jats:sup>−1</jats:sup> for Cd<jats:sup>2+</jats:sup>, Cu<jats:sup>2+</jats:sup>, Pb<jats:sup>2+</jats:sup> and Zn<jats:sup>2+</jats:sup>, respectively at a deposition time of 60 s. The ERGO-HgF-PGE exhibited highly reproducible results with negligible intermetallic interferences and applied successfully to the determination of trace metals in tap water with satisfactory results.</jats:p>

Topics
  • Deposition
  • impedance spectroscopy
  • surface
  • inclusion
  • intermetallic
  • Mercury
  • stripping voltammetry