Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rybin, Clara Anna

  • Google
  • 1
  • 2
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021On the Zr electrochemical conversion of additively manufactured AlSi10Mg: The role of the microstructure4citations

Places of action

Chart of shared publication
Graeve, Iris De
1 / 57 shared
Revilla, Reynier I.
1 / 25 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Graeve, Iris De
  • Revilla, Reynier I.
OrganizationsLocationPeople

article

On the Zr electrochemical conversion of additively manufactured AlSi10Mg: The role of the microstructure

  • Rybin, Clara Anna
  • Graeve, Iris De
  • Revilla, Reynier I.
Abstract

Additively manufactured (AM) AlSi10Mg is one of the most studied AM aluminium alloys to date. While several studies have focused on investigating its mechanical properties and corrosion performance, very little work has been dedicated to study corrosion protection mechanisms and surface treatments applicable for this material. This work presents for the first time an analysis of the mechanism of Zr electrochemical conversion on AM AlSi10Mg parts. A comparison with the conventional cast alloy was also conducted. An analysis of the specimens using SEM/EDS provided interesting insights concerning the effect of the microstructure on the deposition of the Zr conversion layer. This work demonstrates that due to the very fine microstructure and distribution of alloying elements in AM AlSi10Mg, a homogeneous deposition of the Zr conversion layer is promoted. Conversely, the cast alloy is characterized by a very heterogeneous deposition of the Zr conversion layer due to the presence of relatively large Fe-containing intermetallic particles. The influence of the conversion coating on the corrosion performance of these materials was also studied. The results show that while the conversion treatment has no impact on the corrosion resistance of the cast alloy, it greatly improves the passivity of the AM AlSi10Mg samples.

Topics
  • Deposition
  • impedance spectroscopy
  • microstructure
  • surface
  • corrosion
  • scanning electron microscopy
  • aluminium
  • aluminium alloy
  • Energy-dispersive X-ray spectroscopy
  • intermetallic
  • additive manufacturing